656 research outputs found
Mitochondrial DNA mutations in individuals occupationally exposed to ionizing radiation
Mutations in a 443-bp amplicon of the hypervariable region HVR1 of the D-loop of mitochondrial DNA (mtDNA) were quantified in DNA extracted from peripheral blood samples of 10 retired radiation workers who had accumulated external radiation doses of .0.9 Sv over the course of their working life and were compared to the levels of mutations in 10 control individuals matched for age and smoking status. The mutation rate in the 10 exposed individuals was 9.92 3 1025 mutations/ nucleotide, and for the controls it was 8.65 3 1025 mutations/ nucleotide, with a procedural error rate of 2.65 3 1025 mutations/ nucleotide. No increase in mtDNA mutations due to radiation exposure was detectable (P 5 0.640). In contrast, chromosomal translocation frequencies, a validated radiobiological technique for retrospective dosimetric purposes, were significantly elevated in the exposed individuals. This suggests that mutations identified through sequencing of mtDNA in peripheral blood lymphocytes do not represent a promising genetic marker of DNA damage after low-dose or low-doserate exposures to ionizing radiation. There was an increase in singleton mutations above that attributable to procedural error in both exposed and control groups that is likely to reflect age-related somatic mutation
From the zero-field metal-insulator transition in two dimensions to the quantum Hall transition: a percolation-effective-medium theory
Effective-medium theory is applied to the percolation description of the
metal-insulator transition in two dimensions with emphasis on the continuous
connection between the zero-magnetic-field transition and the quantum Hall
transition. In this model the system consists of puddles connected via saddle
points, and there is loss of quantum coherence inside the puddles. The
effective conductance of the network is calculated using appropriate
integration over the distribution of conductances, leading to a determination
of the magnetic field dependence of the critical density. Excellent
quantitative agreement is obtained with the experimental data, which allows an
estimate of the puddle physical parameters
Primary malignant melanoma of the oesophagus: a case report
Primary malignant melanoma of the oesophagus is a rare neoplasm comprising less than 0.2% of all primary oesophageal neoplasms. There are fewer than 250 reported cases in worldwide literature. Several reports suggest that it has a mean survival rate of 2.2% at 5 years and a median survival rate of 10 months. A 48 year old male presented to our surgical service complaining of a three month history of progressively worsening dysphagia with associated regurgitation and unintentional weight loss of 14 kg. There was no prior history of cutaneous or ocular melanoma. He was treated with a combination of subtotal oesophageal resection and immunomodulatory therapy. We present herein a case of primary malignant melanoma of the oesophagus including the associated clinical, pathological and radiological findings
Development of a High Fidelity Dynamic Module of the Advanced Resistive Exercise Device (ARED) Using Adams
NASA's Digital Astronaut Project (DAP) implements well-vetted computational models to predict and assess spaceflight health and performance risks, and enhance countermeasure development. DAP provides expertise and computation tools to its research customers for model development, integration, or analysis. DAP is currently supporting the NASA Exercise Physiology and Countermeasures (ExPC) project by integrating their biomechanical models of specific exercise movements with dynamic models of the devices on which the exercises were performed. This presentation focuses on the development of a high fidelity dynamic module of the Advanced Resistive Exercise Device (ARED) on board the ISS. The ARED module, illustrated in the figure below, was developed using the Adams (MSC Santa Ana, California) simulation package. The Adams package provides the capabilities to perform multi rigid body, flexible body, and mixed dynamic analyses of complex mechanisms. These capabilities were applied to accurately simulate: Inertial and mass properties of the device such as the vibration isolation system (VIS) effects and other ARED components, Non-linear joint friction effects, The gas law dynamics of the vacuum cylinders and VIS components using custom written differential state equations, The ARED flywheel dynamics, including torque limiting clutch. Design data from the JSC ARED Engineering team was utilized in developing the model. This included solid modeling geometry files, component/system specifications, engineering reports and available data sets. The Adams ARED module is importable into LifeMOD (Life Modeler, Inc., San Clemente, CA) for biomechanical analyses of different resistive exercises such as squat and dead-lift. Using motion capture data from ground test subjects, the ExPC developed biomechanical exercise models in LifeMOD. The Adams ARED device module was then integrated with the exercise subject model into one integrated dynamic model. This presentation will describe the development of the Adams ARED module including its capabilities, limitations, and assumptions. Preliminary results, validation activities, and a practical application of the module to inform the relative effect of the flywheels on exercise will be discussed
Autophagy proteins control goblet cell function by potentiating reactive oxygen species production
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/102240/1/embj2013233-reviewer_comments.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/102240/2/embj2013233-sup-0001.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/102240/3/embj2013233.pd
Concentration Dependence of Superconductivity and Order-Disorder Transition in the Hexagonal Rubidium Tungsten Bronze RbxWO3. Interfacial and bulk properties
We revisited the problem of the stability of the superconducting state in
RbxWO3 and identified the main causes of the contradictory data previously
published. We have shown that the ordering of the Rb vacancies in the
nonstoichiometric compounds have a major detrimental effect on the
superconducting temperature Tc.The order-disorder transition is first order
only near x = 0.25, where it cannot be quenched effectively and Tc is reduced
below 1K. We found that the high Tc's which were sometimes deduced from
resistivity measurements, and attributed to compounds with .25 < x < .30, are
to be ascribed to interfacial superconductivity which generates spectacular
non-linear effects. We also clarified the effect of acid etching and set more
precisely the low-rubidium-content boundary of the hexagonal phase.This work
makes clear that Tc would increase continuously (from 2 K to 5.5 K) as we
approach this boundary (x = 0.20), if no ordering would take place - as its is
approximately the case in CsxWO3. This behaviour is reminiscent of the
tetragonal tungsten bronze NaxWO3 and asks the same question : what mechanism
is responsible for this large increase of Tc despite the considerable
associated reduction of the electron density of state ? By reviewing the other
available data on these bronzes we conclude that the theoretical models which
are able to answer this question are probably those where the instability of
the lattice plays a major role and, particularly, the model which call upon
local structural excitations (LSE), associated with the missing alkali atoms.Comment: To be published in Physical Review
Paneth cells as a site of origin for intestinal inflammation.
The recognition of autophagy related 16-like 1 (ATG16L1) as a genetic risk factor has exposed the critical role of autophagy in Crohn's disease. Homozygosity for the highly prevalent ATG16L1 risk allele, or murine hypomorphic (HM) activity, causes Paneth cell dysfunction. As Atg16l1(HM) mice do not develop spontaneous intestinal inflammation, the mechanism(s) by which ATG16L1 contributes to disease remains obscure. Deletion of the unfolded protein response (UPR) transcription factor X-box binding protein-1 (Xbp1) in intestinal epithelial cells, the human orthologue of which harbours rare inflammatory bowel disease risk variants, results in endoplasmic reticulum (ER) stress, Paneth cell impairment and spontaneous enteritis. Unresolved ER stress is a common feature of inflammatory bowel disease epithelium, and several genetic risk factors of Crohn's disease affect Paneth cells. Here we show that impairment in either UPR (Xbp1(ΔIEC)) or autophagy function (Atg16l1(ΔIEC) or Atg7(ΔIEC)) in intestinal epithelial cells results in each other's compensatory engagement, and severe spontaneous Crohn's-disease-like transmural ileitis if both mechanisms are compromised. Xbp1(ΔIEC) mice show autophagosome formation in hypomorphic Paneth cells, which is linked to ER stress via protein kinase RNA-like endoplasmic reticulum kinase (PERK), elongation initiation factor 2α (eIF2α) and activating transcription factor 4 (ATF4). Ileitis is dependent on commensal microbiota and derives from increased intestinal epithelial cell death, inositol requiring enzyme 1α (IRE1α)-regulated NF-κB activation and tumour-necrosis factor signalling, which are synergistically increased when autophagy is deficient. ATG16L1 restrains IRE1α activity, and augmentation of autophagy in intestinal epithelial cells ameliorates ER stress-induced intestinal inflammation and eases NF-κB overactivation and intestinal epithelial cell death. ER stress, autophagy induction and spontaneous ileitis emerge from Paneth-cell-specific deletion of Xbp1. Genetically and environmentally controlled UPR function within Paneth cells may therefore set the threshold for the development of intestinal inflammation upon hypomorphic ATG16L1 function and implicate ileal Crohn's disease as a specific disorder of Paneth cells
High throughput mutagenesis for identification of residues regulating human prostacyclin (hIP) receptor
The human prostacyclin receptor (hIP receptor) is a seven-transmembrane G protein-coupled receptor (GPCR) that plays a critical role in vascular smooth muscle relaxation and platelet aggregation. hIP receptor dysfunction has been implicated in numerous cardiovascular abnormalities, including myocardial infarction, hypertension, thrombosis and atherosclerosis. Genomic sequencing has discovered several genetic variations in the PTGIR gene coding for hIP receptor, however, its structure-function relationship has not been sufficiently explored. Here we set out to investigate the applicability of high throughput random mutagenesis to study the structure-function relationship of hIP receptor. While chemical mutagenesis was not suitable to generate a mutagenesis library with sufficient coverage, our data demonstrate error-prone PCR (epPCR) mediated mutagenesis as a valuable method for the unbiased screening of residues regulating hIP receptor function and expression. Here we describe the generation and functional characterization of an epPCR derived mutagenesis library compromising >4000 mutants of the hIP receptor. We introduce next generation sequencing as a useful tool to validate the quality of mutagenesis libraries by providing information about the coverage, mutation rate and mutational bias. We identified 18 mutants of the hIP receptor that were expressed at the cell surface, but demonstrated impaired receptor function. A total of 38 non-synonymous mutations were identified within the coding region of the hIP receptor, mapping to 36 distinct residues, including several mutations previously reported to affect the signaling of the hIP receptor. Thus, our data demonstrates epPCR mediated random mutagenesis as a valuable and practical method to study the structurefunction relationship of GPCRs. © 2014 Bill et al
Host-Associated Bacteriophage Isolation and Preparation for Viral Metagenomics.
Prokaryotic viruses, or bacteriophages, are viruses that infect bacteria and archaea. These viruses have been known to associate with host systems for decades, yet only recently have their influence on the regulation of host-associated bacteria been appreciated. These studies have been conducted in many host systems, from the base of animal life in the Cnidarian phylum to mammals. These prokaryotic viruses are useful for regulating the number of bacteria in a host ecosystem and for regulating the strains of bacteria useful for the microbiome. These viruses are likely selected by the host to maintain bacterial populations. Viral metagenomics allows researchers to profile the communities of viruses associating with animal hosts, and importantly helps to determine the functional role these viruses play. Further, viral metagenomics show the sphere of viral involvement in gene flow and gene shuffling in an ever-changing host environment. The influence of prokaryotic viruses could, therefore, have a clear impact on host health
- …