5,422 research outputs found

    Experiments in the automatic marking of ER-Diagrams

    Get PDF
    In this paper we present an approach to the computer understanding of diagrams and show how it can be successfully applied to the automatic marking (grading) of student attempts at drawing entity-relationship (ER) diagrams. The automatic marker has been incorporated into a revision tool to enable students to practice diagramming and obtain feedback on their attempts

    Using patterns in the automatic marking of ER-Diagrams

    Get PDF
    This paper illustrates how the notion of pattern can be used in the automatic analysis and synthesis of diagrams, applied particularly to the automatic marking of ER-diagrams. The paper describes how diagram patterns fit into a general framework for diagram interpretation and provides examples of how patterns can be exploited in other fields. Diagram patterns are defined and specified within the area of ER-diagrams. The paper also shows how patterns are being exploited in a revision tool for understanding ER-diagrams

    Reducing Constraints on Quantum Computer Design by Encoded Selective Recoupling

    Get PDF
    The requirement of performing both single-qubit and two-qubit operations in the implementation of universal quantum logic often leads to very demanding constraints on quantum computer design. We show here how to eliminate the need for single-qubit operations in a large subset of quantum computer proposals: those governed by isotropic and XXZ,XY-type anisotropic exchange interactions. Our method employs an encoding of one logical qubit into two physical qubits, while logic operations are performed using an analogue of the NMR selective recoupling method.Comment: 5 pages, 1 table, no figures. Published versio

    Corrections to the universal behavior of the Coulomb-blockade peak splitting for quantum dots separated by a finite barrier

    Full text link
    Building upon earlier work on the relation between the dimensionless interdot channel conductance g and the fractional Coulomb-blockade peak splitting f for two electrostatically equivalent dots, we calculate the leading correction that results from an interdot tunneling barrier that is not a delta-function but, rather, has a finite height V and a nonzero width xi and can be approximated as parabolic near its peak. We develop a new treatment of the problem for g much less than 1 that starts from the single-particle eigenstates for the full coupled-dot system. The finiteness of the barrier leads to a small upward shift of the f-versus-g curve at small values of g. The shift is a consequence of the fact that the tunneling matrix elements vary exponentially with the energies of the states connected. Therefore, when g is small, it can pay to tunnel to intermediate states with single-particle energies above the barrier height V. The correction to the zero-width behavior does not affect agreement with recent experimental results but may be important in future experiments.Comment: Title changed from ``Non-universal...'' to ``Corrections to the universal...'' No other changes. 10 pages, 1 RevTeX file with 2 postscript figures included using eps

    Efficient Model Learning for Human-Robot Collaborative Tasks

    Get PDF
    We present a framework for learning human user models from joint-action demonstrations that enables the robot to compute a robust policy for a collaborative task with a human. The learning takes place completely automatically, without any human intervention. First, we describe the clustering of demonstrated action sequences into different human types using an unsupervised learning algorithm. These demonstrated sequences are also used by the robot to learn a reward function that is representative for each type, through the employment of an inverse reinforcement learning algorithm. The learned model is then used as part of a Mixed Observability Markov Decision Process formulation, wherein the human type is a partially observable variable. With this framework, we can infer, either offline or online, the human type of a new user that was not included in the training set, and can compute a policy for the robot that will be aligned to the preference of this new user and will be robust to deviations of the human actions from prior demonstrations. Finally we validate the approach using data collected in human subject experiments, and conduct proof-of-concept demonstrations in which a person performs a collaborative task with a small industrial robot

    Coulomb Blockade of Tunneling Through a Double Quantum Dot

    Full text link
    We study the Coulomb blockade of tunneling through a double quantum dot. The temperature dependence of the linear conductance is strongly affected by the inter-dot tunneling. As the tunneling grows, a crossover from temperature-independent peak conductance to a power-law suppression of conductance at low temperatures is predicted. This suppression is a manifestation of the Anderson orthogonality catastrophe associated with the charge re-distribution between the dots, which accompanies the tunneling of an electron into a dot. We find analytically the shapes of the Coulomb blockade peaks in conductance as a function of gate voltage.Comment: 11 pages, revtex3.0 and multicols.sty, 4 figures uuencode

    Effective action and interaction energy of coupled quantum dots

    Full text link
    We obtain the effective action of tunnel-coupled quantum dots, by modeling the system as a Luttinger liquid with multiple barriers. For a double dot system, we find that the resonance conditions for perfect conductance form a hexagon in the plane of the two gate voltages controlling the density of electrons in each dot. We also explicitly obtain the functional dependence of the interaction energy and peak-splitting on the gate voltage controlling tunneling between the dots and their charging energies. Our results are in good agreement with recent experimental results, from which we obtain the Luttinger interaction parameter K=0.74K=0.74.Comment: 5 pgs,latex,3 figs,revised version to be publshed in Phys.Rev.

    Tunneling Conductance and Coulomb Blockade Peak Splitting of Two Quantum Dots Connected by a Quantum Point Contact

    Full text link
    By using bosonization method and unitary transformation, we give a general relation between the dimensionless tunneling conductance and the fractional Coulomb blockade conductance peak splitting which is valid both for weak and strong transmission between two quantum dots, and show that the tunneling conductance has a linear temperature dependence in the low energy and low temperature limit.Comment: 12 pages, Revtex, no figures, to appear in Phys. Rev.

    TUNNELING SPECTROSCOPY OF QUANTUM CHARGE FLUCTUATIONS IN THE COULOMB BLOCKADE

    Full text link
    We present a theory of Coulomb blockade oscillations in tunneling through a pair of quantum dots connected by a tunable tunneling junction. The positions and amplitudes of peaks in the linear conductance are directly related, respectively, to the ground state energy and to the dynamics of charge fluctuations. We study analytically both strong and weak interdot tunneling. As the tunneling decreases, the period of the peaks doubles, as observed experimentally. In the strong tunneling limit, we predict a striking power law temperature dependence of the peak amplitudes.Comment: 4 pages, revtex3.0, 1 figure uuencode
    corecore