133 research outputs found
Role of viruses in asthma
Respiratory viral infections are the most important triggers of asthma exacerbations. Rhinovirus (RV), the common cold virus, is clearly the most prevalent pathogen constantly circulating in the community. This virus also stands out from other viral factors due to its large diversity (about 170 genotypes), very effective replication, a tendency to create Th2-biased inflammatory environment and association with specific risk genes in people predisposed to asthma development (CDHR3). Decreased interferon responses, disrupted airway epithelial barrier, environmental exposures (including biased airway microbiome), and nutritional deficiencies (low in vitamin D and fish oil) increase risk to RV and other virus infections. It is intensively debated whether viral illnesses actually cause asthma. Respiratory syncytial virus (RSV) is the leading causative agent of bronchiolitis, whereas RV starts to dominate after 1 year of age. Breathing difficulty induced by either of these viruses is associated with later asthma, but the risk is higher for those who suffer from severe RV-induced wheezing. The asthma development associated with these viruses has unique mechanisms, but in general, RV is a risk factor for later atopic asthma, whereas RSV is more likely associated with later non-atopic asthma. Treatments that inhibit inflammation (corticosteroids, omalizumab) effectively decrease RV-induced wheezing and asthma exacerbations. The anti-RSV monoclonal antibody, palivizumab, decreases the risk of severe RSV illness and subsequent recurrent wheeze. A better understanding of personal and environmental risk factors and inflammatory mechanisms leading to asthma is crucial in developing new strategies for the prevention and treatment of asthma
Bronchiolitis needs a revisit: distinguishing between virus entities and their treatments
Current data indicate that the bronchiolitis diagnosis comprises more than one condition. Clinically, pathophysiologically, and even genetically three main clusters of patients can be identified among children suffering from severe bronchiolitis (or first wheezing episode): (a) respiratory syncytial virus (RSV)-induced bronchiolitis, characterized by young age of the patient, mechanical obstruction of the airways due to mucus and cell debris, and increased risk of recurrent wheezing. For this illness, an effective prophylactic RSV-specific monoclonal antibody is available; (b) rhinovirus-induced wheezing, associated with atopic predisposition of the patient and high risk of subsequent asthma development, which may, however, be reversed with systemic corticosteroids in those with severe illness; and (c) wheeze due to other viruses, characteristically likely to be less frequent and severe. Clinically, it is important to distinguish between these partially overlapping patient groups as they are likely to respond to different treatments. It appears that the first episode of severe bronchiolitis in under 2-year-old children is a critical event and an important opportunity for designing secondary prevention strategies for asthma. As data have shown bronchiolitis cannot simply be diagnosed using a certain cutoff age, but instead, as we suggest, using the viral etiology as the differentiating factor.Host-parasite interactio
Epistasis between FLG and IL4R genes on the risk of allergic sensitization: results from two population-based birth cohort studies
Immune-specifc genes as well as genes responsible for the formation and integrity of the epidermal barrier have been implicated in the pathogeneses of allergic sensitization. This study sought to determine whether an epistatic efect (gene-gene interaction) between genetic variants within interleukin 4 receptor (IL4R) and flaggrin (FLG) genes predispose to the development of allergic sensitization. Data from two birth cohort studies were analyzed, namely the Isle of Wight (IOW; n=1,456) and the Manchester Asthma and Allergy Study (MAAS; n=1,058). In the IOW study, one interaction term (IL4R rs3024676×FLG variants) showed statistical signifcance (interaction term: P=0.003). To illustrate the observed epistasis, stratifed analyses were performed, which showed that FLG variants were associated with allergic sensitization only among IL4R rs3024676 homozygotes (OR, 1.97; 95% CI, 1.27–3.05; P=0.003). In contrast, FLG variants efect was masked among IL4R rs3024676 heterozygotes (OR, 0.53; 95% CI, 0.22–1.32; P=0.175). Similar results were demonstrated in the MAAS study. Epistasis between immune (IL4R) and skin (FLG) regulatory genes exist in the pathogenesis of allergic sensitization. Hence, genetic susceptibility towards defective epidermal barrier and deviated immune responses could work together in the development of allergic sensitization
A candidate gene approach identifies an IL33 genetic variant as a novel genetic risk factor for GCA
INTRODUCTION:
Increased expression of IL-33 and its receptor ST2, encoded by the IL1RL1 gene, has been detected in the inflamed arteries of giant cell arteritis (GCA) patients. The aim of the present study was to investigate for the first time the potential influence of the IL33 and IL1RL1 loci on GCA predisposition.
METHODS:
A total of 1,363 biopsy-proven GCA patients and 3,908 healthy controls from four European cohorts (Spain, Italy, Germany and Norway) were combined in a meta-analysis. Six genetic variants: rs3939286, rs7025417 and rs7044343, within the IL33 gene, and rs2058660, rs2310173 and rs13015714, within the IL1RL1 gene, previously associated with immune-related diseases, were genotyped using predesigned TaqMan assays.
RESULTS:
A consistent association between the rs7025417 polymorphism and GCA was evident in the overall meta-analysis, under both allele (P(MH) = 0.041, OR = 0.88, CI 95% 0.78-0.99) and recessive (P(MH) = 3.40E-03, OR = 0.53, CI 95% 0.35-0.80) models. No statistically significant differences between allele or genotype frequencies for the other IL33 and IL1RL1 genetic variants were detected in this pooled analysis.
CONCLUSIONS:
Our results clearly evidenced the implication of the IL33 rs7025417 polymorphism in the genetic network underlying GCA
Variants in the fetal genome near pro-inflammatory cytokine genes on 2q13 associate with gestational duration
The duration of pregnancy is influenced by fetal and maternal genetic and non-genetic factors. Here we report a fetal genome-wide association meta-analysis of gestational duration, and early preterm, preterm, and postterm birth in 84,689 infants. One locus on chromosome 2q13 is associated with gestational duration; the association is replicated in 9,291 additional infants (combined P= 3.96 x 10(-14)). Analysis of 15,588 mother-child pairs shows that the association is driven by fetal rather than maternal genotype. Functional experiments show that the lead SNP, rs7594852, alters the binding of the HIC1 transcriptional repressor. Genes at the locus include several interleukin 1 family members with roles in pro-inflammatory pathways that are central to the process of parturition. Further understanding of the underlying mechanisms will be of great public health importance, since giving birth either before or after the window of term gestation is associated with increased morbidity and mortality.Peer reviewe
Persistent activation of interlinked type 2 airway epithelial gene networks in sputum-derived cells from aeroallergen-sensitized symptomatic asthmatics
© 2018 The Author(s). Atopic asthma is a persistent disease characterized by intermittent wheeze and progressive loss of lung function. The disease is thought to be driven primarily by chronic aeroallergen-induced type 2-associated inflammation. However, the vast majority of atopics do not develop asthma despite ongoing aeroallergen exposure, suggesting additional mechanisms operate in conjunction with type 2 immunity to drive asthma pathogenesis. We employed RNA-Seq profiling of sputum-derived cells to identify gene networks operative at baseline in house dust mite-sensitized (HDM S ) subjects with/without wheezing history that are characteristic of the ongoing asthmatic state. The expression of type 2 effectors (IL-5, IL-13) was equivalent in both cohorts of subjects. However, in HDM S -wheezers they were associated with upregulation of two coexpression modules comprising multiple type 2- and epithelial-associated genes. The first module was interlinked by the hubs EGFR, ERBB2, CDH1 and IL-13. The second module was associated with CDHR3 and mucociliary clearance genes. Our findings provide new insight into the molecular mechanisms operative at baseline in the airway mucosa in atopic asthmatics undergoing natural aeroallergen exposure, and suggest that susceptibility to asthma amongst these subjects involves complex interactions between type 2- and epithelial-associated gene networks, which are not operative in equivalently sensitized/exposed atopic non-asthmatics
A rare IL33 loss-of-function mutation reduces blood eosinophil counts and protects from asthma.
Efst á síðunni er hægt að nálgast greinina í heild sinni með því að smella á hlekkinnIL-33 is a tissue-derived cytokine that induces and amplifies eosinophilic inflammation and has emerged as a promising new drug target for asthma and allergic disease. Common variants at IL33 and IL1RL1, encoding the IL-33 receptor ST2, associate with eosinophil counts and asthma. Through whole-genome sequencing and imputation into the Icelandic population, we found a rare variant in IL33 (NM_001199640:exon7:c.487-1G>C (rs146597587-C), allele frequency = 0.65%) that disrupts a canonical splice acceptor site before the last coding exon. It is also found at low frequency in European populations. rs146597587-C associates with lower eosinophil counts (β = -0.21 SD, P = 2.5×10-16, N = 103,104), and reduced risk of asthma in Europeans (OR = 0.47; 95%CI: 0.32, 0.70, P = 1.8×10-4, N cases = 6,465, N controls = 302,977). Heterozygotes have about 40% lower total IL33 mRNA expression than non-carriers and allele-specific analysis based on RNA sequencing and phased genotypes shows that only 20% of the total expression is from the mutated chromosome. In half of those transcripts the mutation causes retention of the last intron, predicted to result in a premature stop codon that leads to truncation of 66 amino acids. The truncated IL-33 has normal intracellular localization but neither binds IL-33R/ST2 nor activates ST2-expressing cells. Together these data demonstrate that rs146597587-C is a loss of function mutation and support the hypothesis that IL-33 haploinsufficiency protects against asthma.Netherlands Asthma Foundation University Medical Center Groningen
Ministry of Health and Environmental Hygiene of Netherlands
Netherlands Asthma
Stichting Astma Bestrijding
BBMRI
European Respiratory Society
private and public research funds
AstraZeneca
ALK-Abello, Denmar
Plasma proteins elevated in severe asthma despite oral steroid use and unrelated to Type-2 inflammation
Rationale Asthma phenotyping requires novel biomarker discovery. Objectives To identify plasma biomarkers associated with asthma phenotypes by application of a new proteomic panel to samples from two well-characterised cohorts of severe (SA) and mild-to-moderate (MMA) asthmatics, COPD subjects and healthy controls (HCs). Methods An antibody-based array targeting 177 proteins predominantly involved in pathways relevant to inflammation, lipid metabolism, signal transduction and extracellular matrix was applied to plasma from 525 asthmatics and HCs in the U-BIOPRED cohort, and 142 subjects with asthma and COPD from the validation cohort BIOAIR. Effects of oral corticosteroids (OCS) were determined by a 2-week, placebo-controlled OCS trial in BIOAIR, and confirmed by relation to objective OCS measures in U-BIOPRED. Results In U-BIOPRED, 110 proteins were significantly different, mostly elevated, in SA compared to MMA and HCs. 10 proteins were elevated in SA versus MMA in both U-BIOPRED and BIOAIR (alpha-1-antichymotrypsin, apolipoprotein-E, complement component 9, complement factor I, macrophage inflammatory protein-3, interleukin-6, sphingomyelin phosphodiesterase 3, TNF receptor superfamily member 11a, transforming growth factor-β and glutathione S-transferase). OCS treatment decreased most proteins, yet differences between SA and MMA remained following correction for OCS use. Consensus clustering of U-BIOPRED protein data yielded six clusters associated with asthma control, quality of life, blood neutrophils, high-sensitivity C-reactive protein and body mass index, but not Type-2 inflammatory biomarkers. The mast cell specific enzyme carboxypeptidase A3 was one major contributor to cluster differentiation. Conclusions The plasma proteomic panel revealed previously unexplored yet potentially useful Type-2independent biomarkers and validated several proteins with established involvement in the pathophysiology of SA
GWAS on longitudinal growth traits reveals different genetic factors influencing infant, child, and adult BMI
Early childhood growth patterns are associated with adult health, yet the genetic factors and the developmental stages involved are not fully understood. Here, we combine genome-wide association studies with modeling of longitudinal growth traits to study the genetics of infant and child growth, followed by functional, pathway, genetic correlation, risk score, and colocalization analyses to determine how developmental timings, molecular pathways, and genetic determinants of these traits overlap with those of adult health. We found a robust overlap between the genetics of child and adult body mass index (BMI), with variants associated with adult BMI acting as early as 4 to 6 years old. However, we demonstrated a completely distinct genetic makeup for peak BMI during infancy, influenced by variation at the LEPR/LEPROT locus. These findings suggest that different genetic factors control infant and child BMI. In light of the obesity epidemic, these findings are important to inform the timing and targets of prevention strategies
- …