4,319 research outputs found

    Detection of a relic X-ray jet in Cygnus A

    Full text link
    We present a 200 ks Chandra ACIS-I image of Cygnus A, and discuss a long linear feature seen in its counterlobe. This feature has a non-thermal spectrum and lies on the line connecting the brighter hotspot on the approaching side and the nucleus. We therefore conclude that this feature is (or was) a jet. However, the outer part of this X-ray jet does not trace the current counterjet observed in radio. No X-ray counterpart is observed on the jet side. Using light-travel time effects we conclude that this X-ray 50 kpc linear feature is a relic jet that contains enough low-energy plasma (gamma ~ 10^3) to inverse-Compton scatter cosmic microwave background photons, producing emission in the X-rays.Comment: 4 pages. Proceedings of "High Energy Phenomena in Relativistic Outflows", held in Dublin, Ireland, September 24-28, 200

    Multiwavelength study of Cygnus A IV. Proper motion and location of the nucleus

    Full text link
    Context. Cygnus A, as the nearest powerful FR II radio galaxy, plays an important role in understanding jets and their impact on the surrounding intracluster medium. Aims. To explain why the nucleus is observed superposed onto the eastern lobe rather than in between the two lobes, and why the jet and counterjet are non-colinear. Methods. We made a comparative study of the radio images at different frequencies of Cygnus A, in combination with the published results on the radial velocities in the Cygnus A cluster. Results. From the morphology of the inner lobes we conclude that the lobes are not interacting with one another, but are well separated, even at low radio frequencies. We explain the location of the nucleus as the result of the proper motion of the galaxy through the cluster. The required proper motion is of the same order of magnitude as the radial velocity offset of Cygnus A with the sub-cluster it belongs to. The proper motion of the galaxy through the cluster likely also explains the non-co-linearity of the jet and counterjet.Comment: Accepted for publication in A&A, 8 pages, 4 figure

    The radio luminosity function of radio-loud quasars from the 7C Redshift Survey

    Get PDF
    We present a complete sample of 24 radio-loud quasars (RLQs) from the new 7C Redshift Survey. Every quasar with a low-frequency (151 MHz) radio flux-density S_151 > 0.5 Jy in two regions of the sky covering 0.013 sr is included; 23 of these have sufficient extended flux to meet the selection criteria, 18 of these have steep radio spectra (hereafter denoted as SSQs). The key advantage of this sample over most samples of RLQs is the lack of an optical magnitude limit. By combining the 7C and 3CRR samples, we have investigated the properties of RLQs as a function of redshift z and radio luminosity L_151. We derive the radio luminosity function (RLF) of RLQs and find that the data are well fitted by a single power-law with slope alpha_1=1.9. We find that there must be a break in the RLQ RLF at log_10(L_151 / W Hz^-1 sr^-1) < 27, in order for the models to be consistent with the 7C and 6C source counts. The z-dependence of the RLF follows a one-tailed gaussian which peaks at z=1.7. We find no evidence for a decline in the co-moving space density of RLQs at higher redshifts. A positive correlation between the radio and optical luminosities of SSQs is observed, confirming a result of Serjeant et al. (1998). We are able to rule out this correlation being due to selection effects or biases in our combined sample. The radio-optical correlation and best-fit model RLF enable us to estimate the distribution of optical magnitudes of quasars in samples selected at low radio frequencies. We conclude that for samples with S_151 < 1 Jy one must use optical data significantly deeper than the POSS-I limit (R approx 20), in order to avoid severe incompleteness.Comment: 28 pages with 13 figures. To appear in MNRA

    The 6C** Sample and the Highest Redshift Radio Galaxies

    Full text link
    We present a new radio sample, 6C** designed to find radio galaxies at z > 4 and discuss some of its near-infrared imaging follow-up results.Comment: 2 pages, 2 figures, to appear in proceedings of 'Multi-wavelength AGN surveys', Cozumel, 200

    Inverse Compton X-rays from Giant Radio Galaxies at z~1

    Full text link
    We report XMM-Newton observations of three FR II radio galaxies at redshifts between 0.85 and 1.34, which show extended diffuse X-ray emission within the radio lobes, likely due to inverse-Compton up-scattering of the cosmic microwave background. Under this assumption, through spectrum-fitting together with archival VLA radio observations, we derive an independent estimate of the magnetic field in the radio lobes of 3C 469.1 and compare it with the equipartition value. We find concordance between these two estimates as long as the turnover in the energy distribution of the particles occurs at a Lorentz factor in excess of ~ 250. We determine the total energy in relativistic particles in the radio emitting lobes of all three sources to range between 3e59 and 8e59 erg. The nuclei of these X-ray sources are heavily-absorbed powerful AGN.Comment: 5 pages, 7 figures, 2 tables. Accepted for publication in MNRA

    On the uncertain future of the volumetric 3D display paradigm.

    Get PDF
    Volumetric displays permit electronically processed images to be depicted within a transparent physical volume and enable a range of cues to depth to be inherently associated with image content. Further, images can be viewed directly by multiple simultaneous observers who are able to change vantage positions in a natural way. On the basis of research to date, we assume that the technologies needed to implement useful volumetric displays able to support translucent image formation are available and so primarily focus on other issues that have impeded the broad commercialization and application of this display paradigm. This is of particular relevance given the recent resurgence of interest in developing commercially viable, general purpose, volumetric systems. We particularly consider image and display characteristics, usability issues and identify several advantageous attributes that need to be exploited in order to effectively capitalize on this display modality.N/

    Two-gap superconductivity with line nodes in CsCa2_2Fe4_4As4_4F2_2

    Full text link
    We report the results of a muon-spin rotation (μ\muSR) experiment to determine the superconducting ground state of the iron-based superconductor CsCa2_2Fe4_4As4_4F2_2 with Tc≈28.3 T_{\rm c} \approx 28.3\,K. This compound is related to the fully-gapped superconductor CaCsFe4_4As4_4, but here the Ca-containing spacer layer is replaced with one containing Ca2_2F2_2. The temperature evolution of the penetration depth strongly suggests the presence of line nodes and is best modelled by a system consisting of both an ss- and a dd-wave gap. We also find a potentially magnetic phase which appears below ≈10 \approx 10\,K but does not appear to compete with the superconductivity. This compound contains the largest alkali atom in this family of superconductors and our results yield a value for the in-plane penetration depth of λab(T=0)=423(5) \lambda_{ab}(T=0)=423(5)\,nm.Comment: 6 pages, 2 figure

    Magnetic Monopole Noise

    Full text link
    Magnetic monopoles are hypothetical elementary particles exhibiting quantized magnetic charge m0=±(h/μ0e)m_0=\pm(h/\mu_0e) and quantized magnetic flux Φ0=±h/e\Phi_0=\pm h/e. A classic proposal for detecting such magnetic charges is to measure the quantized jump in magnetic flux Φ\Phi threading the loop of a superconducting quantum interference device (SQUID) when a monopole passes through it. Naturally, with the theoretical discovery that a plasma of emergent magnetic charges should exist in several lanthanide-pyrochlore magnetic insulators, including Dy2_2Ti2_2O7_7, this SQUID technique was proposed for their direct detection. Experimentally, this has proven extremely challenging because of the high number density, and the generation-recombination (GR) fluctuations, of the monopole plasma. Recently, however, theoretical advances have allowed the spectral density of magnetic-flux noise SΦ(ω,T)S_{\Phi}(\omega,T) due to GR fluctuations of ±m∗\pm m_* magnetic charge pairs to be determined. These theories present a sequence of strikingly clear predictions for the magnetic-flux noise signature of emergent magnetic monopoles. Here we report development of a high-sensitivity, SQUID based flux-noise spectrometer, and consequent measurements of the frequency and temperature dependence of SΦ(ω,T)S_{\Phi}(\omega,T) for Dy2_2Ti2_2O7_7 samples. Virtually all the elements of SΦ(ω,T)S_{\Phi}(\omega,T) predicted for a magnetic monopole plasma, including the existence of intense magnetization noise and its characteristic frequency and temperature dependence, are detected directly. Moreover, comparisons of simulated and measured correlation functions CΦ(t)C_{\Phi}(t) of the magnetic-flux noise Φ(t)\Phi(t) imply that the motion of magnetic charges is strongly correlated because traversal of the same trajectory by two magnetic charges of same sign is forbidden
    • …
    corecore