24 research outputs found
The intergroup protocols: Scalable group communication for the internet
Reliable group ordered delivery of multicast messages in a distributed system is a useful service that simplifies the programming of distributed applications. Such a service helps to maintain the consistency of replicated information and to coordinate the activities of the various processes. With the increasing popularity of the Internet, there is an increasing interest in scaling the protocols that provide this service to the environment of the Internet. The InterGroup protocol suite, described in this dissertation, provides such a service, and is intended for the environment of the Internet with scalability to large numbers of nodes and high latency links. The InterGroup protocols approach the scalability problem from various directions. They redefine the meaning of group membership, allow voluntary membership changes, add a receiver-oriented selection of delivery guarantees that permits heterogeneity of the receiver set, and provide a scalable reliability service. The InterGroup system comprises several components, executing at various sites within the system. Each component provides part of the services necessary to implement a group communication system for the wide-area. The components can be categorized as: (1) control hierarchy, (2) reliable multicast, (3) message distribution and delivery, and (4) process group membership. We have implemented a prototype of the InterGroup protocols in Java, and have tested the system performance in both local-area and wide-area networks
Supporting dynamic ad hoc collaboration capabilities
Modern HENP experiments such as CMS and Atlas involve as many as 2000 collaborators around the world. Collaborations this large will be unable to meet often enough to support working closely together. Many of the tools currently available for collaboration focus on heavy-weight applications such as videoconferencing tools. While these are important, there is a more basic need for tools that support connecting physicists to work together on an ad hoc or continuous basis. Tools that support the day-to-day connectivity and underlying needs of a group of collaborators are important for providing light-weight, nonintrusive, and flexible ways to work collaboratively. Some example tools include messaging, file-sharing, and shared plot viewers. An important component of the environment is a scalable underlying communication framework. In this paper we will describe our current progress on building a dynamic and ad hoc collaboration environment and our vision for its evolution into a HENP collaboration environment. 1
A Practical Approach to the InterGroup Protocols
Existing reliable ordered group communication protocols have been developed for local-area networks and do not, in general, scale well to large numbers of nodes and wide-area networks. The InterGroup suite of protocols is a scalable group communication system that introduces an unusual approach to handling group membership, and supports a receiver-oriented selection of service. The protocols are intended for a wide-area network, with a large number of nodes, that has highly variable delays and a high message loss rate, such as the Internet. The levels of the message delivery service range from unreliable unordered to reliable timestamp ordered. We also present a secure group layer that builds on InterGroup to provide SSL-like security for groups
The InterGroup protocols: Scalable group communication for the Internet
Existing reliable totally ordered group communication protocols have been developed for local-area networks and do not, in general, scale well to large numbers of nodes and wide-area networks. The InterGroup suite of protocols is a scalable group communication system that supports a receiver-oriented selection of service. The protocols are intended for a wide-area network, with a large number of nodes, that has highly variable delays and a high message loss rate, such as the Internet. The levels of message delivery service range from unreliable unordered to group ordered with certified guarantees of message delivery.
The crystal structure of D-threonine aldolase from Alcaligenes xylosoxidans provides insight into a metal ion assisted PLP-dependent mechanism.
Threonine aldolases catalyze the pyridoxal phosphate (PLP) dependent cleavage of threonine into glycine and acetaldehyde and play a major role in the degradation of this amino acid. In nature, L- as well as D-specific enzymes have been identified, but the exact physiological function of D-threonine aldolases (DTAs) is still largely unknown. Both types of enantio-complementary enzymes have a considerable potential in biocatalysis for the stereospecific synthesis of various β-hydroxy amino acids, which are valuable building blocks for the production of pharmaceuticals. While several structures of L-threonine aldolases (LTAs) have already been determined, no structure of a DTA is available to date. Here, we report on the determination of the crystal structure of the DTA from Alcaligenes xylosoxidans (AxDTA) at 1.5 Å resolution. Our results underline the close relationship of DTAs and alanine racemases and allow the identification of a metal binding site close to the PLP-cofactor in the active site of the enzyme which is consistent with the previous observation that divalent cations are essential for DTA activity. Modeling of AxDTA substrate complexes provides a rationale for this metal dependence and indicates that binding of the β-hydroxy group of the substrate to the metal ion very likely activates this group and facilitates its deprotonation by His193. An equivalent involvement of a metal ion has been implicated in the mechanism of a serine dehydratase, which harbors a metal ion binding site in the vicinity of the PLP cofactor at the same position as in DTA. The structure of AxDTA is completely different to available structures of LTAs. The enantio-complementarity of DTAs and LTAs can be explained by an approximate mirror symmetry of crucial active site residues relative to the PLP-cofactor
Overview of the InterGroup Protocols
Existing reliable ordered group communication protocols have been developed for local-area networks and do not, in general, scale well to large numbers of nodes and wide-area networks. The InterGroup suite of protocols is a scalable group communication system that introduces a novel approach to handling group membership, and supports a receiver-oriented selection of service. The protocols are intended for a wide-area network, with a large number of nodes, that has highly variable delays and a high message loss rate, such as the Internet. The levels of the message delivery service range from unreliable unordered to reliable group timestamp ordered