2 research outputs found

    Stability of Repulsive Bose-Einstein Condensates in a Periodic Potential

    Full text link
    The cubic nonlinear Schr\"odinger equation with repulsive nonlinearity and an elliptic function potential models a quasi-one-dimensional repulsive dilute gas Bose-Einstein condensate trapped in a standing light wave. New families of stationary solutions are presented. Some of these solutions have neither an analog in the linear Schr\"odinger equation nor in the integrable nonlinear Schr\"odinger equation. Their stability is examined using analytic and numerical methods. All trivial-phase stable solutions are deformations of the ground state of the linear Schr\"odinger equation. Our results show that a large number of condensed atoms is sufficient to form a stable, periodic condensate. Physically, this implies stability of states near the Thomas-Fermi limit.Comment: 12 pages, 17 figure

    Brownian motion after Einstein and Smoluchowski: Some new applications and new experiments

    Full text link
    The first half of this review describes the development in mathematical models of Brownian motion after Einstein’s and Smoluchowski’s seminal papers and current applications to optical tweezers. This instrument of choice among single-molecule biophysicists is also an instrument of such precision that it requires an understanding of Brownian motion beyond Einstein’s and Smoluchowski’s for its calibration, and can measure effects not present in their theories. This is illustrated with some applications, current and potential. It is also shown how addition of a controlled forced motion on the nano-scale of the thermal motion of the tweezed object can improve the calibration of the instrument in general, and make calibration possible also in complex surroundings. The second half of the present re- view, starting with Sect. 9, describes the co-evolution of biological motility models with models of Brownian motion, including recent results for how to derive cell-type-specific motility models from experimental cell trajectories
    corecore