8,413 research outputs found
Implications of Compressed Supersymmetry for Collider and Dark Matter Searches
Martin has proposed a scenario dubbed ``compressed supersymmetry'' (SUSY)
where the MSSM is the effective field theory between energy scales M_{\rm weak}
and M_{\rm GUT}, but with the GUT scale SU(3) gaugino mass M_3<< M_1 or M_2. As
a result, squark and gluino masses are suppressed relative to slepton, chargino
and neutralino masses, leading to a compressed sparticle mass spectrum, and
where the dark matter relic density in the early universe may be dominantly
governed by neutralino annihilation into ttbar pairs via exchange of a light
top squark. We explore the dark matter and collider signals expected from
compressed SUSY for two distinct model lines with differing assumptions about
GUT scale gaugino mass parameters. For dark matter signals, the compressed
squark spectrum leads to an enhancement in direct detection rates compared to
models with unified gaugino masses. Meanwhile, neutralino halo annihilation
rates to gamma rays and anti-matter are also enhanced relative to related
scenarios with unified gaugino masses but, depending on the halo dark matter
distribution, may yet be below the sensitivity of indirect searches underway.
In the case of collider signals, we compare the rates for the potentially
dominant decay modes of the stop_1 which may be expected to be produced in
cascade decay chains at the LHC: \tst_1\to c\tz_1 and \tst_1\to bW\tz_1. We
examine the extent to which multilepton signal rates are reduced when the
two-body decay mode dominates. For the model lines that we examine here, the
multi-lepton signals, though reduced, still remain observable at the LHC.Comment: 22 pages including 24 eps figure
Hidden SUSY at the LHC: the light higgsino-world scenario and the role of a lepton collider
While the SUSY flavor, CP and gravitino problems seem to favor a very heavy
spectrum of matter scalars, fine-tuning in the electroweak sector prefers low
values of superpotential mass \mu. In the limit of low \mu, the two lightest
neutralinos and light chargino are higgsino-like. The light charginos and
neutralinos may have large production cross sections at LHC, but since they are
nearly mass degenerate, there is only small energy release in three-body
sparticle decays. Possible dilepton and trilepton signatures are difficult to
observe after mild cuts due to the very soft p_T spectrum of the final state
isolated leptons. Thus, the higgsino-world scenario can easily elude standard
SUSY searches at the LHC. It should motivate experimental searches to focus on
dimuon and trimuon production at the very lowest p_T(\mu) values possible. If
the neutralino relic abundance is enhanced via non-standard cosmological dark
matter production, then there exist excellent prospects for direct or indirect
detection of higgsino-like WIMPs. While the higgsino-world scenario may easily
hide from LHC SUSY searches, a linear e^+e^- collider or a muon collider
operating in the \sqrt{s}\sim 0.5-1 TeV range would be able to easily access
the chargino and neutralino pair production reactions.Comment: 20 pages including 12 .eps figure
Mixed Higgsino Dark Matter from a Large SU(2) Gaugino Mass
We observe that in SUSY models with non-universal GUT scale gaugino mass
parameters, raising the GUT scale SU(2) gaugino mass |M_2| from its unified
value results in a smaller value of -m_{H_u}^2 at the weak scale. By the
electroweak symmetry breaking conditions, this implies a reduced value of \mu^2
{\it vis \`a vis} models with gaugino mass unification. The lightest neutralino
can then be mixed Higgsino dark matter with a relic density in agreement with
the measured abundance of cold dark matter (DM). We explore the phenomenology
of this high |M_2| DM model. The spectrum is characterized by a very large wino
mass and a concomitantly large splitting between left- and right- sfermion
masses. In addition, the lighter chargino and three light neutralinos are
relatively light with substantial higgsino components. The higgsino content of
the LSP implies large rates for direct detection of neutralino dark matter, and
enhanced rates for its indirect detection relative to mSUGRA. We find that
experiments at the LHC should be able to discover SUSY over the portion of
parameter space where m_{\tg} \alt 2350-2750 ~GeV, depending on the squark
mass, while a 1 TeV electron-positron collider has a reach comparable to that
of the LHC. The dilepton mass spectrum in multi-jet + \ell^+\ell^- + \eslt
events at the LHC will likely show more than one mass edge, while its shape
should provide indirect evidence for the large higgsino content of the decaying
neutralinos.Comment: 36 pages with 26 eps figure
The Reach of the Fermilab Tevatron and CERN LHC for Gaugino Mediated SUSY Breaking Models
In supersymmetric models with gaugino mediated SUSY breaking (inoMSB), it is
assumed that SUSY breaking on a hidden brane is communicated to the visible
brane via gauge superfields which propagate in the bulk. This leads to GUT
models where the common gaugino mass is the only soft SUSY breaking
term to receive contributions at tree level. To obtain a viable phenomenology,
it is assumed that the gaugino mass is induced at some scale beyond the
GUT scale, and that additional renormalization group running takes place
between and as in a SUSY GUT. We assume an SU(5) SUSY GUT above
the GUT scale, and compute the SUSY particle spectrum expected in models with
inoMSB. We use the Monte Carlo program ISAJET to simulate signals within the
inoMSB model, and compute the SUSY reach including cuts and triggers approriate
to Fermilab Tevatron and CERN LHC experiments. We find no reach for SUSY by the
Tevatron collider in the trilepton channel. %either with or without %identified
tau leptons. At the CERN LHC, values of (1160) GeV can be probed
with 10 (100) fb of integrated luminosity, corresponding to a reach in
terms of of 2150 (2500) GeV. The inoMSB model and mSUGRA can likely
only be differentiated at a linear collider with sufficient energy to
produce sleptons and charginos.Comment: 17 page revtex file with 9 PS figure
Collider and Dark Matter Phenomenology of Models with Mirage Unification
We examine supersymmetric models with mixed modulus-anomaly mediated SUSY
breaking (MM-AMSB) soft terms which get comparable contributions to SUSY
breaking from moduli-mediation and anomaly-mediation. The apparent (mirage)
unification of soft SUSY breaking terms at Q=mu_mir not associated with any
physical threshold is the hallmark of this scenario. The MM-AMSB structure of
soft terms arises in models of string compactification with fluxes, where the
addition of an anti-brane leads to an uplifting potential and a de Sitter
universe, as first constructed by Kachru {\it et al.}. The phenomenology mainly
depends on the relative strength of moduli- and anomaly-mediated SUSY breaking
contributions, and on the Higgs and matter field modular weights, which are
determined by the location of these fields in the extra dimensions. We
delineate the allowed parameter space for a low and high value of tan(beta),
for a wide range of modular weight choices. We calculate the neutralino relic
density and display the WMAP-allowed regions. We show the reach of the CERN LHC
and of the International Linear Collider. We discuss aspects of MM-AMSB models
for Tevatron, LHC and ILC searches, muon g-2 and b->s \gamma branching
fraction. We also calculate direct and indirect dark matter detection rates,
and show that almost all WMAP-allowed models should be accessible to a
ton-scale noble gas detector. Finally, we comment on the potential of colliders
to measure the mirage unification scale and modular weights in the difficult
case where mu_mir>>M_GUT.Comment: 34 pages plus 42 EPS figures; version with high resolution figures is
at http://www.hep.fsu.edu/~bae
Collider and Dark Matter Searches in Models with Mixed Modulus-Anomaly Mediated SUSY Breaking
We investigate the phenomenology of supersymmetric models where moduli fields
and the Weyl anomaly make comparable contributions to SUSY breaking effects in
the observable sector of fields. This mixed modulus-anomaly mediated
supersymmetry breaking (MM-AMSB) scenario is inspired by models of string
compactification with fluxes, which have been shown to yield a de Sitter vacuum
(as in the recent construction by Kachru {\it et al}). The phenomenology
depends on the so-called modular weights which, in turn, depend on the location
of various fields in the extra dimensions. We find that the model with zero
modular weights gives mass spectra characterized by very light top squarks
and/or tau sleptons, or where M_1\sim -M_2 so that the bino and wino are
approximately degenerate. The top squark mass can be in the range required by
successful electroweak baryogenesis. The measured relic density of cold dark
matter can be obtained via top squark co-annihilation at low \tan\beta, tau
slepton co-annihilation at large \tan\beta or via bino-wino coannihilation.
Then, we typically find low rates for direct and indirect detection of
neutralino dark matter. However, essentially all the WMAP-allowed parameter
space can be probed by experiments at the CERN LHC, while significant portions
may also be explored at an e^+e^- collider with \sqrt{s}=0.5--1 TeV. We also
investigate a case with non-zero modular weights. In this case,
co-annihilation, A-funnel annihilation and bulk annihilation of neutralinos are
all allowed. Results for future colliders are qualitatively similar, but
prospects for indirect dark matter searches via gamma rays and anti-particles
are somewhat better.Comment: 38 pages including 22 EPS figures; latest version posted to conform
with published versio
Impact of Muon Anomalous Magnetic Moment on Supersymmetric Models
The recent measurement of a_\mu =\frac{g_\mu -2}{2} by the E821 Collaboration
at Brookhaven deviates from the quoted Standard Model (SM) central value
prediction by 2.6\sigma. The difference between SM theory and experiment may be
easily accounted for in a variety of particle physics models employing weak
scale supersymmetry (SUSY). Other supersymmetric models are distinctly
disfavored. We evaluate a_\mu for various supersymmetric models, including
minimal supergravity (mSUGRA), Yukawa unified SO(10) SUSY GUTs, models with
inverted mass hierarchies (IMH), models with non-universal gaugino masses,
gauge mediated SUSY breaking models (GMSB), anomaly-mediated SUSY breaking
models (AMSB) and models with gaugino mediated SUSY breaking (inoMSB). Models
with Yukawa coupling unification or multi-TeV first and second generation
scalars are disfavored by the a_\mu measurement.Comment: 25 page REVTEX file with 10 PS figures. Minor rewording, typos
corrected, references adde
SUPERSYMMETRY REACH OF AN UPGRADED TEVATRON COLLIDER
We examine the capability of a TeV Tevatron collider
to discover supersymmetry, given a luminosity upgrade to amass of
data. We compare with the corresponding reach of the Tevatron Main Injector
( of data). Working within the framework of minimal supergravity
with gauge coupling unification and radiative electroweak symmetry breaking, we
first calculate the regions of parameter space accessible via the clean
trilepton signal from \tw_1\tz_2\to 3\ell +\eslt production, with detailed
event generation of both signal and major physics backgrounds. The trilepton
signal can allow equivalent gluino masses of up to GeV to
be probed if is small. If is large, then GeV can
be probed for and large values of , the
rate for \tz_2\to\tz_1\ell\bar{\ell} is suppressed by interference effects,
and there is {\it no} reach in this channel. We also examine regions where the
signal from \tw_1\overline{\tw_1}\to \ell\bar{\ell}+\eslt is detectable.
Although this signal is background limited, it is observable in some regions
where the clean trilepton signal is too small. Finally, the signal
\tw_1\tz_2\to jets+\ell\bar{\ell} +\eslt can confirm the clean trilepton
signal in a substantial subset of the parameter space where the trilepton
signal can be seen. We note that although the clean trilepton signal may allow
Tevatron experiments to identify signals in regions of parameter space beyond
the reach of LEP II, the dilepton channels generally probe much the same region
as LEP II.Comment: 19 page REVTEX file; a uuencoded PS file with PS figures is available
via anonymous ftp at ftp://hep.fsu.edu/preprints/baer/FSUHEP950301.u
- …