329 research outputs found

    Redundancy Allocation of Partitioned Linear Block Codes

    Full text link
    Most memories suffer from both permanent defects and intermittent random errors. The partitioned linear block codes (PLBC) were proposed by Heegard to efficiently mask stuck-at defects and correct random errors. The PLBC have two separate redundancy parts for defects and random errors. In this paper, we investigate the allocation of redundancy between these two parts. The optimal redundancy allocation will be investigated using simulations and the simulation results show that the PLBC can significantly reduce the probability of decoding failure in memory with defects. In addition, we will derive the upper bound on the probability of decoding failure of PLBC and estimate the optimal redundancy allocation using this upper bound. The estimated redundancy allocation matches the optimal redundancy allocation well.Comment: 5 pages, 2 figures, to appear in IEEE International Symposium on Information Theory (ISIT), Jul. 201

    Spin polarisabilities of the nucleon at NLO in the chiral expansion

    Get PDF
    We present a calculation of the fourth-order (NLO) contribution to spin-dependent Compton scattering in heavy-baryon chiral perturbation theory, and we give results for the four spin polarisabilities. No low-energy constants, except for the anomalous magnetic moments of the nucleon, enter at this order. For forward scattering the fourth-order piece of the spin polarisability of the proton turns out to be almost twice the size of the leading piece, with the opposite sign. This leads to the conclusion that no prediction can currently be made for this quantity. For backward scattering the fourth-order contribution is much smaller than the third-order piece which is dominated by the anomalous scattering, and so cannot explain the discrepancy between the CPT result and the current best experimental determination.Comment: 8 pages, 2 figures, revtex. Minor typos corrected and reference adde
    corecore