75 research outputs found

    Evidence for field-induced excitations in low-temperature thermal conductivity of Bi_2Sr_2CaCu_2O_8

    Full text link
    The thermal conductivity ,κ\kappa, of Bi_2Sr_2CaCu_2O_8 was studied as a function of magnetic field. Above 5 K, after an initial decrease, κ(H)\kappa(H) presents a kink followed by a plateau, as recently reported by Krishana et al.. By contrast, below 1K, the thermal conductivity was found to \emph{increase} with increasing field. This behavior is indicative of a finite density of states and is not compatible with the existence of a field-induced fully gapped dx2y2+idxyd_{x^{2}-y^{2}}+id_{xy} state which was recently proposed to describe the plateau regime. Our low-temperature results are in agreement with recent works predicting a field-induced enhancement of thermal conductivity by Doppler shift of quasi-particle spectrum.Comment: 4 pages including 4 eps figures, submitted to Phys. Rev. Let

    Quasiparticle thermal Hall angle and magnetoconductance in YBa_2Cu_3O_x

    Full text link
    We present a way to extract the quasiparticle (qp) thermal conductivity Kappa_e and mean-free-path in YBa_2Cu_3O_x, using the thermal Hall effect and the magnetoconductance of Kappa_e. The results are very consistent with heat capacity experiments. Moreover, we find a simple relation between the thermal Hall angle Theta_Q and the H-dependence of Kappa_e, as well as numerical equality between Theta_Q and the electrical Hall angle. The findings also reveal an anomalously anisotropic scattering process in the normal state.Comment: 4 pages in Tex, 5 figures in EPS; replaced on 5/12/99, minor change

    Separation of Quasiparticle and Phononic Heat Currents in YBCO

    Full text link
    Measurements of the transverse (k_{xy}) and longitudinal (k_{xx}) thermal conductivity in high magnetic fields are used to separate the quasiparticle thermal conductivity (k_{xx}^{el}) of the CuO_2-planes from the phononic thermal conductivity in YBa_2Cu_3O_{7-\delta}. k_{xx}^{el} is found to display a pronounced maximum below T_c. Our data analysis reveals distinct transport (\tau) and Hall (\tau_H) relaxation times below T_c: Whereas \tau is strongly enhanced, \tau_H follows the same temperature dependence as above T_c

    Mixed-state quasiparticle transport in high-T_c cuprates: localization by magnetic field

    Full text link
    Theory of quasiparticle transport in the mixed state of a d-wave superconductor is developed under the assumption of disordered vortex array. A novel universal regime is identified at fields above H*= c*H_{c2}(T/T_c)^2, characterized by a field-independent longitudinal thermal conductivity. It is argued that this behavior is responsible for the high-field plateau in the thermal conductivity experimentally observed in cuprates by Krishana, Ong and co-workers.Comment: 4 pages REVTeX + 1 PostScript figure. Final version to appear in PRL. Several changes in response to referee comments. For related work and info visit http://www.pha.jhu.edu/~fran

    Time reversal symmetry breaking superconductivity

    Full text link
    We study time reversal symmetry breaking superconductivity with Δk=Δx2y2(k)+eiθΔα\Delta_k = \Delta_{x^2-y^2} (k) +e^{i\theta} \Delta_{\alpha} (α=s\alpha = s or dxyd_{xy}) symmetries. It is shown that the behavior of such superconductors could be {\em qualitatively} different depending on the minor components (α\alpha) and its phase at lower temperatures. It is argued that such {\em qualitatively different} behaviors in thermal as well as in angular dependencies could be a {\em source} of consequences in transport and Josephson physics. Orthorhombicity is found to be a strong mechanism for mixed phase (in case of α=s\alpha = s). We show that due to electron correlation the order parameter is more like a pure dx2y2d_{x^2-y^2} symmetry near optimum doping.Comment: 5 pages, 5 figures (attached), to be published in Physical Review

    Dirac Nodes and Quantized Thermal Hall Effect in the Mixed State of d-wave Superconductors

    Full text link
    We consider the vortex state of d-wave superconductors in the clean limit. Within the linearized approximation the quasiparticle bands obtained are found to posess Dirac cone dispersion (band touchings) at special points in the Brillouin zone. They are protected by a symmetry of the linearized Hamiltonian that we call T_Dirac. Moreover, for vortex lattices that posess inversion symmetry, it is shown that there is always a Dirac cone centered at zero energy within the linearized theory. On going beyond the linearized approximation and including the effect of the smaller curvature terms (that break T_Dirac), the Dirac cone dispersions are found to acquire small gaps (0.5 K/Tesla in YBCO) that scale linearly with the applied magnetic field. When the chemical potential for quasiparticles lies within the gap, quantization of the thermal-Hall conductivity is expected at low temperatures i.e. kappa_{xy}/T = n[(pi k_B)^2/(3h)] with the integer `n' taking on values n=+2, -2, 0. This quantization could be seen in low temperature thermal transport measurements of clean d-wave superconductors with good vortex lattices.Comment: (23 pages in all [7 pages in appendices], 9 figures

    Ground State Vortex Lattice Structures in d-wave Superconductors

    Get PDF
    We show in a realistic dx2y2d_{x^{2}-y^{2}} symmetry gap model for a cuprate superconductor that the clean vortex lattice has discontinuous structural transitions (at and near T=0), as a function of the magnetic field BB along the c-axis. The transitions arise from the singular nonlocal and anisotropic susceptibility of the dx2y2d_{x^{2}-y^{2}} superconductor to the perturbation caused by supercurrents associated with vortices. The susceptibility, due to virtual Dirac quasiparticle-hole excitation, is calculated carefully, and leads to a ground state transition for the triangular lattice from an orientation along one of the crystal axis to one at 45o^o to them, i.e, along the gap zero direction. The field scale is seen to be 5 Tesla (Δ0/ta)2Φ0 \sim (\Delta_{0}/ta)^{2}\Phi_{0}, where Δ0\Delta_{0} is the gap maximum, tt is the nearest neighbour hopping, aa is the lattice constant, and Φ0\Phi_{0} is the flux quantum. At much higher fields (28T\sim 28T) there is a discontinuous transition to a centred square structure. The source of the differences from existing calculations, and experimental observability are discussed, the latter especially in view of the very small (a few degrees KK per vortex) differences in the ground state energy.Comment: To be published in Phys. Rev.

    The Haldane-Rezayi Quantum Hall State and Magnetic Flux

    Full text link
    We consider the general abelian background configurations for the Haldane-Rezayi quantum Hall state. We determine the stable configurations to be the ones with the spontaneous flux of (Z+1/2)ϕ0(\Z+1/2) \phi_0 with ϕ0=hc/e\phi_0 = hc/e. This gives the physical mechanism by which the edge theory of the state becomes identical to the one for the 331 state. It also provides a new experimental consequence which can be tested in the enigmatic ν=5/2\nu=5/2 plateau in a single layer system.Comment: RevTex, 5 pages, 2 figures. v2:minor corrections. v4: published version. Discussion on the thermodynamic limit adde

    Thermal Conductivity Tensor in YBa2_2Cu3_3O7x_{7-x}: Effects of a Planar Magnetic Field

    Full text link
    We have measured the thermal conductivity tensor of a twinned YBa2_2Cu3_3O7x_{7-x} single crystal as a function of angle θ\theta between the magnetic field applied parallel to the CuO2_2 planes and the heat current direction, at different magnetic fields and at T=13.8 K. Clear fourfold and twofold variations in the field-angle dependence of κxx\kappa_{xx} and κxy\kappa_{xy} were respectively recorded in accordance with the d-wave pairing symmetry of the order parameter. The oscillation amplitude of the transverse thermal conductivity κxy0\kappa^0_{xy} was found to be larger than the longitudinal one κxx0\kappa^0_{xx} in the range of magnetic field studied here (0T0 T B9 \le B \le 9 TT). From our data we obtain quantities that are free from non-electronic contributions and they allow us a comparison of the experimental results with current models for the quasiparticle transport in the mixed state.Comment: 9 Figures, Phys. Rev. B(in press

    Low temperature superfluid stiffness of d-wave superconductor in a magnetic field

    Full text link
    The temperature and field dependence of the superfluid density ρs\rho_s in the vortex state of a d-wave superconductor are calculated using a microscopic model in the quasiclassical approximation. We show that at temperatures below T^{*} \varpropto \sqrt{H}$, the linear T dependence of rho_s crosses over to a T^2 dependence differently from the behavior of the effective penetration depth, lambda_eff^{-2}(T). We point out that the expected dependences could be probed by a mutual-inductance technique experiment.Comment: 4 pages, RevTeX4, 2 EPS figures; minor revisions made and 1 new reference added; final version published in PR
    corecore