4,229 research outputs found
Integer quantum Hall effect of interacting electrons: dynamical scaling and critical conductivity
We report on a study of interaction effects on the polarization of a
disordered two-dimensional electron system in a strong magnetic field. Treating
the Coulomb interaction within the time-dependent Hartree-Fock approximation we
find numerical evidence for dynamical scaling with a dynamical critical
exponent z=1 at the integer quantum Hall plateau transition in the lowest
Landau level. Within the numerical accuracy of our data the conductivity at the
transition and the anomalous diffusion exponent are given by the values for
non-interacting electrons, independent of the strength of the interaction.Comment: Minor changes. Final version to be published in Phys. Rev. Lett. June
2
Josephson effects in dilute Bose-Einstein condensates
We propose an experiment that would demonstrate the ``dc'' and ``ac''
Josephson effects in two weakly linked Bose-Einstein condensates. We consider a
time-dependent barrier, moving adiabatically across the trapping potential. The
phase dynamics are governed by a ``driven-pendulum'' equation, as in
current-driven superconducting Josephson junctions. At a critical velocity of
the barrier (proportional to the critical tunneling current), there is a sharp
transition between the ``dc'' and ``ac'' regimes. The signature is a sudden
jump of a large fraction of the relative condensate population. Analytical
predictions are compared with a full numerical solution of the time dependent
Gross-Pitaevskii equation, in an experimentally realistic situation.Comment: 4 pages, 1 figur
Quantum dynamics of local phase differences between reservoirs of driven interacting bosons separated by simple aperture arrays
We present a derivation of the effective action for the relative phase of
driven, aperture-coupled reservoirs of weakly-interacting condensed bosons from
a (3+1)-D microscopic model with local U(1) gauge symmetry. We show that
inclusion of local chemical potential and driving velocity fields as a gauge
field allows derivation of the hydrodynamic equations of motion for the driven
macroscopic phase differences across simple aperture arrays. For a single
aperture, the current-phase equation for driven flow contains sinusoidal,
linear, and current-bias contributions. We compute the renormalization group
(RG) beta function of the periodic potential in the effective action for small
tunneling amplitudes and use this to analyze the temperature dependence of the
low-energy current-phase relation, with application to the transition from
linear to sinusoidal current-phase behavior observed in experiments by
Hoskinson et al. \cite{packard} for liquid He driven through nanoaperture
arrays. Extension of the microscopic theory to a two-aperture array shows that
interference between the microscopic tunneling contributions for individual
apertures leads to an effective coupling between apertures which amplifies the
Josephson oscillations in the array. The resulting multi-aperture current-phase
equations are found to be equivalent to a set of equations for coupled pendula,
with microscopically derived couplings.Comment: 16 pages, 5 figures v2: typos corrected, RG phase diagram correcte
Direct demonstration of circulating currents in a controllable -SQUID generated by a 0 to transition of the weak links
A controllable -SQUID is a DC SQUID with two controllable
-junctions as weak links. A controllable -junction consists of a
superconducting - normal metal - superconducting Josephson junction with two
additional contacts to the normal region of the junction. By applying a voltage
over these contacts it is possible to control the sate of the junction,
i.e. a conventional (0) state or a -state, depending on the magnitude of
. We demonstrate experimentally that, by putting one junction into a
-state, a screening current is generated around the SQUID loop at integer
external flux. To be able to do this, we have fabricated controllable
-junctions, based on Cu-Nb or Ag-Nb, in a new geometry. We show that at
1.4 K only the Nb-Ag device shows the transition to a -state as a function
of consistent with theoretical predictions. In a controllable SQUID
based on Nb-Ag we observe, a part from a screening current at integer external
flux, a phase shift of of the oscillations under suitable
current bias, depending on the magnitude of .Comment: 11 pages, 12 figures, subm. to Phys. Rev.
Pinhole calculations of the Josephson effect in 3He-B
We study theoretically the dc Josephson effect between two volumes of
superfluid 3He-B. We first discuss how the calculation of the current-phase
relationships is divided into a mesoscopic and a macroscopic problem. We then
analyze mass and spin currents and the symmetry of weak links. In quantitative
calculations the weak link is assumed to be a pinhole, whose size is small in
comparison to the coherence length. We derive a quasiclassical expression for
the coupling energy of a pinhole, allowing also for scattering in the hole.
Using a selfconsistent order parameter near a wall, we calculate the
current-phase relationships in several cases. In the isotextural case, the
current-phase relations are plotted assuming a constant spin-orbit texture. In
the opposite anisotextural case the texture changes as a function of the phase
difference. For that we have to consider the stiffness of the macroscopic
texture, and we also calculate some surface interaction parameters. We analyze
the experiments by Marchenkov et al. We find that the observed pi states and
bistability hardly can be explained with the isotextural pinhole model, but a
good quantitative agreement is achieved with the anisotextural model.Comment: 20 pages, 21 figures, revtex
Josephson Effect between Condensates with Different Internal Structures
A general formula for Josephson current in a wide class of hybrid junctions
between different internal structures is derived on the basis of the Andreev
picture. The formula extends existing formulae and also enables us to analyze
novel B-phase/A-phase/B-phase (BAB) junctions in superfluid helium three
systems, which are accessible to experiments. It is predicted that BAB
junctions will exhibit two types of current-phase relations associated with
different internal symmetries. A ``pseudo-magnetic interface effect'' inherent
in the system is also revealed.Comment: 4 pages, 2 figure
Observation of metastable states in spinor Bose-Einstein condensates
Bose-Einstein condensates have been prepared in long-lived metastable excited
states. Two complementary types of metastable states were observed. The first
is due to the immiscibility of multiple components in the condensate, and the
second to local suppression of spin-relaxation collisions. Relaxation via
re-condensation of non-condensed atoms, spin relaxation, and quantum tunneling
was observed. These experiments were done with F=1 spinor Bose-Einstein
condensates of sodium confined in an optical dipole trap.Comment: 3 figures included in paper, fourth figure separat
Abnormal cognition, sleep, EEG and brain metabolism in a novel knock-in Alzheimer mouse, PLB1
Peer reviewedPublisher PD
The quest for companions to post-common envelope binaries: I. Searching a sample of stars from the CSS and SDSS
As part of an ongoing collaboration between student groups at high schools
and professional astronomers, we have searched for the presence of
circum-binary planets in a bona-fide unbiased sample of twelve post-common
envelope binaries (PCEBs) from the Catalina Sky Survey (CSS) and the Sloan
Digital Sky Survey (SDSS). Although the present ephemerides are significantly
more accurate than previous ones, we find no clear evidence for orbital period
variations between 2005 and 2011 or during the 2011 observing season. The
sparse long-term coverage still permits O-C variations with a period of years
and an amplitude of tens of seconds, as found in other systems. Our
observations provide the basis for future inferences about the frequency with
which planet-sized or brown-dwarf companions have either formed in these
evolved systems or survived the common envelope (CE) phase.Comment: accepted by A&
Measurements of Relative Phase in Binary Mixtures of Bose-Einstein Condensates
We have measured the relative phase of two Bose-Einstein condensates (BEC)
using a time-domain separated-oscillatory-field condensate interferometer. A
single two-photon coupling pulse prepares the double condensate system with a
well-defined relative phase; at a later time, a second pulse reads out the
phase difference accumulated between the two condensates. We find that the
accumulated phase difference reproduces from realization to realization of the
experiment, even after the individual components have spatially separated and
their relative center-of-mass motion has damped.Comment: 12 pages, 3 figure
- …