3,980 research outputs found

    Varriation of growth rates in yellow-bellied marmots

    Get PDF
    Growth rates of yellow-bellied marmot (Marmota flaviventris) populations over a 32-year period (1965 -1996) varied Significantly with sex, age, location, and year. Overall, males had higher growth rates than females and young and yearlings generally had higher growth rates compared to adults at all locations. The locations varied with respect to elevation and the relationship between elevation and growth rate was complex and likely weather dependent. Low rainfall in late summer was often associated with low growth rates at high elevations where the active season is constrained and delayed by late spring snowmelt compared to low elevations. Growth rates and survivorship of young were more strongly influenced by deviations in rainfall than those of adults. Further, the effects of weaning date and mass on pre-hibernation mass were more pronounced for male young at higher elevations than for female young

    Reproductive energetics of adult male yellow- bellied marmots (Marmota flaviventris)

    Get PDF
    We examined the energy expenditure of adult male yellow-bellied marmots and its relationship to various female-defense characteristics critical to male reproductive success. Resting metabolic rates of males were estimated in the laboratory via oxygen-consumption analysis, and field metabolic rates were estimated using a doubly Labeled water technique. Male home-range size, number of females defended by males, dispersion of females in the habitat, and date into the active season were considered to be predictors of male energy expenditure in excess of maintenance costs (field metabolic rate minus resting metabolic rate). Energy expenditure was best explained by a defensibility index based on the number and dispersion of females defended; expenditure increased with number and dispersion of females. Energy expenditure increased with date into the active season. Environmental constraints on male activity during the mating season may have led to a shift in male reproductive investment to later in the season, when intruder pressure by conspecifics increased. No short-term survival costs were associated with high energy expenditure; males appeared to engage in reproductive behaviors congruent with their physiological capabilities

    Ultrafast (but Many-Body) Relaxation in a Low-Density Electron Glass

    Full text link
    We present a study of the relaxation dynamics of the photoexcited conductivity of the impurity states in the low-density electronic glass, phosphorous-doped silicon Si:P. Using optical pump-terahertz probe spectroscopy we find strongly temperature and fluence dependent glassy power-law relaxation occurring over sub-ns time scales. Such behavior is in contrast to the much longer time scales found in higher electron density glassy systems. We also find evidence for both multi-particle relaxation mechanisms and/or coupling to electronic collective modes and a low temperature quantum relaxational regime.Comment: 4 pages, 4 figures, Appeared in Phys. Rev. Let

    Environmentally induced phenotypic variation in wild yellow-bellied marmots

    Get PDF
    We thank all the marmoteers who helped in data collection and 2 anonymous reviewers who helped us to clarify our message. AM-C was supported by a Fulbright Fellowship, and JGAM was supported by Fond Québécois de Recherche sur la Nature et les Technologies. KBA was supported by the National Science Foundation between 1962 and 2000. DTB was supported by the National Geographic Society, UCLA (Faculty Senate and the Division of Life Sciences), a Rocky Mountain Biological Laboratory research fellowship, and by the National Science Foundation (IDBR-0754247 and DEB-1119660 to DTB as well as DBI 0242960 and 0731346 to the Rocky Mountain Biological Laboratory).Peer reviewedPostprin

    Constraints on a planetary origin for the gap in GM Aurigae's protoplanetary disc

    Get PDF
    The unusual spectral energy distribution (SED) of the classical T Tauri star GM Aurigae provides evidence for the presence of an inner disc hole extending to several au. Using a combination of hydrodynamical simulations and Monte Carlo radiative transport, we investigate whether the observed SED is consistent with the inner hole being created and maintained by an orbiting planet. We show that an ~ 2 M_Jupiter planet, orbiting at 2.5 au in a disc with mass 0.047 M_sun and radius 300 au, provides a good match both to the SED and to CO observations which constrain the velocity field in the disc. A range of planet masses is allowed by current data, but could in principle be distinguished with further observations between 3 and ~ 20 microns. Future high precision astrometric instruments should also be able to detect the motion of the central star due to an orbiting Jupiter mass planet. We argue that the small number of T Tauri stars with SEDs resembling that of GM Aur is broadly consistent with the expected statistics of embedded migrating planets

    Electronic Structure of Electron-doped Sm1.86Ce0.14CuO4: Strong `Pseudo-Gap' Effects, Nodeless Gap and Signatures of Short Range Order

    Full text link
    Angle resolved photoemission (ARPES) data from the electron doped cuprate superconductor Sm1.86_{1.86}Ce0.14_{0.14}CuO4_4 shows a much stronger pseudo-gap or "hot-spot" effect than that observed in other optimally doped nn-type cuprates. Importantly, these effects are strong enough to drive the zone-diagonal states below the chemical potential, implying that d-wave superconductivity in this compound would be of a novel "nodeless" gap variety. The gross features of the Fermi surface topology and low energy electronic structure are found to be well described by reconstruction of bands by a 2×2\sqrt{2}\times\sqrt{2} order. Comparison of the ARPES and optical data from the samesame sample shows that the pseudo-gap energy observed in optical data is consistent with the inter-band transition energy of the model, allowing us to have a unified picture of pseudo-gap effects. However, the high energy electronic structure is found to be inconsistent with such a scenario. We show that a number of these model inconsistencies can be resolved by considering a short range ordering or inhomogeneous state.Comment: 5 pages, 4 figure

    Confidence interval estimation for the changepoint of treatment stratification in the presence of a qualitative covariate-treatment interaction

    Get PDF
    The goal in stratified medicine is to administer the \textquotedblbest\textquotedbl treatment to a patient. Not all patients might benefit from the same treatment; the choice of best treatment can depend on certain patient characteristics. In this article, it is assumed that a time-to-event outcome is considered as a patient-relevant outcome and a qualitative interaction between a continuous covariate and treatment exists, ie,~that patients with different values of one specific covariate should be treated differently. We suggest and investigate different methods for confidence interval estimation for the covariate value, where the treatment recommendation should be changed based on data collected in a randomized clinical trial. An adaptation of Fieller's theorem, the delta method, and different bootstrap approaches (normal, percentile-based, wild bootstrap) are investigated and compared in a simulation study. Extensions to multivariable problems are presented and evaluated. We observed appropriate confidence interval coverage following Fieller's theorem irrespective of sample size but at the cost of very wide or even infinite confidence intervals. The delta method and the wild bootstrap approach provided the smallest intervals but inadequate coverage for small to moderate event numbers, also depending on the location of the true changepoint. For the percentile-based bootstrap, wide intervals were observed, and it was slightly conservative regarding coverage, whereas the normal bootstrap did not provide acceptable results for many scenarios. The described methods were also applied to data from a randomized clinical trial comparing two treatments for patients with symptomatic, severe carotid artery stenosis, considering patient's age as predictive marker

    Superconductivity and Pseudogap in Quasi-Two-Dimensional Metals around the Antiferromagnetic Quantum Critical Point

    Full text link
    Spin fluctuations (SF) and SF-mediated superconductivity (SC) in quasi-two-dimensional metals around the antiferrromagnetic (AF) quantum critical point (QCP) are investigated by using the self-consistent renormalization theory for SF and the strong coupling theory for SC. We introduce a parameter y0 as a measure for the distance from the AFQCP which is approximately proportional to (x-xc), x being the electron (e) or hole (h) doping concentration to the half-filled band and xc being the value at the AFQCP. We present phase diagrams in the T-y0 plane including contour maps of the AF correlation length and AF and SC transition temperatures TN and Tc, respectively. The Tc curve is dome-shaped with a maximum at around the AFQCP. The calculated one-electron spectral density shows a pseudogap in the high-density-of-states region near (pi,0) below around a certain temperature T* and gives a contour map at the Fermi energy reminiscent of the Fermi arc. These results are discussed in comparison with e- and h-doped high-Tc cuprates.Comment: 5 pages, 3 figure

    Hot Spots and Transition from d-Wave to Another Pairing Symmetry in the Electron-Doped Cuprate Superconductors

    Full text link
    We present a simple theoretical explanation for a transition from d-wave to another superconducting pairing observed in the electron-doped cuprates. The d_{x^2-y^2} pairing potential Delta, which has the maximal magnitude and opposite signs at the hot spots on the Fermi surface, becomes suppressed with the increase of electron doping, because the hot spots approach the Brillouin zone diagonals, where Delta vanishes. Then, the d_{x^2-y^2} pairing is replaced by either singlet s-wave or triplet p-wave pairing. We argue in favor of the latter and discuss experiments to uncover it.Comment: 6 pages, 4 figures, RevTeX 4. V.2: Extra figure and many references added. V.3: Minor update of references for the proof

    Factorization and Scaling in Hadronic Diffraction

    Get PDF
    In standard Regge theory with a pomeron intercept a(0)=1+\epsilon, the contribution of the tripe-pomeron amplitude to the t=0 differential cross section for single diffraction dissociation has the form d\sigma/dM^2(t=0) \sim s^{2\epsilon}/(M^2)^{1+\epsilon}. For \epsilon>0, this form, which is based on factorization, does not scale with energy. From an analysis of p-p and p-pbar data from fixed target to collider energies, we find that such scaling actually holds, signaling a breakdown of factorization. Phenomenologically, this result can be obtained from a scaling law in diffraction, which is embedded in the hypothesis of pomeron flux renormalization introduced to unitarize the triple pomeron amplitude.Comment: 39 pages, Latex, 16 figure
    corecore