10 research outputs found

    Effects of Ferromagnetic Magnetic Ordering and Phase Transition on the Resistivity of Spin Current

    Full text link
    It has been shown experimentally a long time ago that the magnetic ordering causes an anomalous behavior of the electron resistivity in ferromagnetic crystals. Phenomenological explanations based on the interaction between itinerant electron spins and lattice spins have been suggested to explain these observations. We show by extensive Monte Carlo simulation that this behavior is also observed for the resistivity of the spin current calculated as a function of temperature (TT) from low-TT ordered phase to high-TT paramagnetic phase in a ferromagnet. We show in particular that across the critical region, the spin resistivity undergoes a huge peak. The origin of this peak is shown to stem from the formation of magnetic domains near the phase transition. The behavior of the resistivity obtained here is compared to experiments and theories. A good agreement is observed.Comment: 7 pages, 3 figures, accepted, to appear in J. Appl. Phy

    Spin Resistivity in Frustrated Antiferromagnets

    Full text link
    In this paper we study the spin transport in frustrated antiferromagnetic FCC films by Monte Carlo simulation. In the case of Ising spin model, we show that the spin resistivity versus temperature exhibits a discontinuity at the phase transition temperature: an upward jump or a downward fall, depending on how many parallel and antiparallel localized spins interacting with a given itinerant spin. The surface effects as well as the difference of two degenerate states on the resistivity are analyzed. Comparison with non frustrated antiferromagnets is shown to highlight the frustration effect. We also show and discuss the results of the Heisenberg spin model on the same lattice

    Spin transport in magnetic multilayers

    Full text link
    We study by extensive Monte Carlo simulations the transport of itinerant spins travelling inside a multilayer composed of three ferromagnetic films antiferromagnetically coupled to each other in a sandwich structure. The two exterior films interact with the middle one through non magnetic spacers. The spin model is the Ising one and the in-plane transport is considered. Various interactions are taken into account. We show that the current of the itinerant spins going through this system depends strongly on the magnetic ordering of the multilayer: at temperatures TT below (above) the transition temperature TcT_c, a strong (weak) current is observed. This results in a strong jump of the resistance across TcT_c. Moreover, we observe an anomalous variation, namely a peak, of the spin current in the critical region just above TcT_c. We show that this peak is due to the formation of domains in the temperature region between the low-TT ordered phase and the true paramagnetic disordered phase. The existence of such domains is known in the theory of critical phenomena. The behavior of the resistance obtained here is compared to a recent experiment. An excellent agreement with our physical interpretation is observed. We also show and discuss effects of various physical parameters entering our model such as interaction range, strength of electric and magnetic fields and magnetic film and non magnetic spacer thicknesses.Comment: 8 pages, 17 figures, submitted to J. Phys.: Cond Matte

    The study of optical gain for terahertz quantum cascade laser using density matrix method

    Get PDF
    Terahertz (THz) quantum cascade lasers (QCL) are currently increasing in popularity. It is expected to become the main source of emerging terahertz radiation technology and applications. However to produce the device within the application specification is costly and time consuming. This is because the manufacturing process of the superlattice growth and the device processing and testing are long and expensive processes. Thus a prediction tool is needed to overcome the problems in designing and producing THz QCL within the needed optical expectation. The density matrix method is used to calculate the performance of this device electronically and optically. The result obtained was compared to the experimental result conducted by previous researchers. The calculation result showed that the gain is 20 cm−1 when the population inversion occurs at threshold current density of 400 A cm-2. Meanwhile a negative gain or loss occurs below 350 A cm-2. As a conclusion, it is demonstrated that this method has a capability to explain the transport phenomena as well as to predict the performance of the THz QCL device design

    Temperature Dependence of the Spin Resistivity in Ferromagnetic Thin Films

    No full text
    11 pages, 18 figures, submitted for publicationInternational audienceThe magnetic phase transition is experimentally known to give rise to an anomalous temperature-dependence of the electron resistivity in ferromagnetic crystals. Phenomenological theories based on the interaction between itinerant electron spins and lattice spins have been suggested to explain these observations. In this paper, we show by extensive Monte Carlo (MC) simulation the behavior of the resistivity of the spin current calculated as a function of temperature (TT) from low-TT ordered phase to high-TT paramagnetic phase in a ferromagnetic film. We analyze in particular effects of film thickness, surface interactions and different kinds of impurities on the spin resistivity across the critical region. The origin of the resistivity peak near the phase transition is shown to stem from the existence of magnetic domains in the critical region. We also formulate in this paper a theory based on the Boltzmann's equation in the relaxation-time approximation. This equation can be solved using numerical data obtained by our simulations. We show that our theory is in a good agreement with our MC results. Comparison with experiments is discussed

    Theoretical and experimental operating wavelength of GaAs/Al

    No full text
    IR photodetectors based on GaAs/Al0.25Ga0.75As multiquantum wells (QWIP) grown by molecular beam epitaxy (MBE) are studied. The envelop function formalism is used to determine the theoretical intersubband transition energies. The electronic states are calculated in both parabolic and non parabolic cases. IR spectroscopy transmission is used as the experimental technique to evaluate the optical absorption. The measures are made at 77 K for incidence at both 45° and Brewster angles geometries. The last experimental results compare well with the theoretical ones and correspond to 10–12 Ό\mu m operating wavelength

    Interplay of thermochemistry and Structural Chemistry: the journal (volume 29, 2018, issues 5–6) and the discipline

    No full text
    corecore