1,873 research outputs found

    Direct evaporative cooling of 41K into a Bose-Einstein condensate

    Full text link
    We have investigated the collisional properties of 41K atoms at ultracold temperature. To show the possibility to use 41K as a coolant, a Bose-Einstein condensate of 41K atoms in the stretched state (F=2, m_F=2) was created for the first time by direct evaporation in a magnetic trap. An upper bound of three body loss coefficient for atoms in the condensate was determined to be 4(2) 10^{-29} cm -6 s-1. A Feshbach resonance in the F=1, m_F=-1 state was observed at 51.42(5) G, which is in good agreement with theoretical prediction.Comment: 4 pages, 4 figure

    Observation of near-quantum-limited velocity distributions of a levitated particle

    Full text link
    We demonstrate time-of-flight measurements for an ultracold levitated nanoparticle and reveal its translational velocity in the quantum regime. We discover that the velocity distributions obtained with repeated measurements are significantly broadened via librational motions of the nanoparticle. Under feedback cooling on all the librational motions, we recover the velocity distributions in reasonable agreement with an expectation from the occupation number, with approximately twice the width of the quantum limit. The strong impact of librational motions on the translational motions is understood as a result of the deviation between the libration center and the center of mass, induced by the asymmetry of the nanoparticle. Our results elucidate the importance of the control over librational motions and establish the basis for exploring quantum mechanical properties of levitated nanoparticles in terms of their velocity.Comment: 7 pages, 7 file

    Modeling Molecular-Line Emission from Circumstellar Disks

    Full text link
    Molecular lines hold valuable information on the physical and chemical composition of disks around young stars, the likely progenitors of planetary systems. This invited contribution discusses techniques to calculate the molecular emission (and absorption) line spectrum based on models for the physical and chemical structure of protoplanetary disks. Four examples of recent research illutrate these techniques in practice: matching resolved molecular-line emission from the disk around LkCa15 with theoertical models for the chemistry; evaluating the two-dimensional transfer of ultraviolet radiation into the disk, and the effect on the HCN/CN ratio; far-infrared CO line emission from a superheated disk surface layer; and inward motions in the disk around L1489 IRS.Comment: 6 pages, no figures. To appear in "The Dense Interstellar Medium in Galaxies", Procs. Fourth Cologne-Bonn-Zermatt-Symposiu

    Observation of the Fano-Kondo Anti-Resonance in a Quantum Wire with a Side-Coupled Quantum Dot

    Full text link
    We have observed the Fano-Kondo anti-resonance in a quantum wire with a side-coupled quantum dot. In a weak coupling regime, dips due to the Fano effect appeared. As the coupling strength increased, conductance in the regions between the dips decreased alternately. From the temperature dependence and the response to the magnetic field, we conclude that the conductance reduction is due to the Fano-Kondo anti-resonance. At a Kondo valley with the Fano parameter q≈0q\approx 0, the phase shift is locked to π/2\pi/2 against the gate voltage when the system is close to the unitary limit in agreement with theoretical predictions by Gerland {\it et al.} [Phys. Rev. Lett. {\bf 84}, 3710 (2000)].Comment: 4 pages, 4 figure

    Line Emission from Gas in Optically Thick Dust Disks around Young Stars

    Full text link
    We present self-consistent models of gas in optically-thick dusty disks and calculate its thermal, density and chemical structure. The models focus on an accurate treatment of the upper layers where line emission originates, and at radii ≳0.7\gtrsim 0.7 AU. We present results of disks around ∼1M⊙\sim 1{\rm M}_{\odot} stars where we have varied dust properties, X-ray luminosities and UV luminosities. We separately treat gas and dust thermal balance, and calculate line luminosities at infrared and sub-millimeter wavelengths from all transitions originating in the predominantly neutral gas that lies below the ionized surface of the disk. We find that the [ArII] 7μ\mum, [NeII] 12.8μ\mum, [FeI] 24μ\mum, [SI] 25μ\mum, [FeII] 26μ\mum, [SiII] 35 μ\mum, [OI] 63μ\mum and pure rotational lines of H2_2, H2_2O and CO can be quite strong and are good indicators of the presence and distribution of gas in disks. We apply our models to the disk around the nearby young star, TW Hya, and find good agreement between our model calculations and observations. We also predict strong emission lines from the TW Hya disk that are likely to be detected by future facilities. A comparison of CO observations with our models suggests that the gas disk around TW Hya may be truncated to ∼120\sim 120 AU, compared to its dust disk of 174 AU. We speculate that photoevaporation due to the strong stellar FUV field from TW Hya is responsible for the gas disk truncation.Comment: Accepted to Astrophysical Journa
    • …
    corecore