85 research outputs found

    Long distance modifications of gravity in four dimensions

    Full text link
    We discuss some general characteristics of modifications of the 4D Einstein-Hilbert action that become important for low space-time curvatures. In particular we focus on the chameleon-like behaviour of the massive gravitational degrees of freedom. Generically there is at least one extra scalar that is light on cosmic scales, but for certain models it becomes heavy close to any mass source.Comment: 4 pages, contribution to the proceedings of the Rencontres de Moriond: Contents and Structures of the Universe, March 18-25, 2006, La Thuil

    Dark energy, MOND and sub-millimeter tests of gravity

    Get PDF
    We consider modifications of General Relativity obtained by adding the logarithm of some curvature invariants to the Einstein-Hilbert action. These non-linear actions can explain the late-time acceleration of the universe giving an expansion history that differs from that of a pure cosmological constant. We show that they also modify the Newtonian potential below a fixed acceleration scale given by the late-time Hubble constant times the speed of light. This is exactly what is required in MOND, a phenomenological modification of the Newtonian potential that is capable of explaining galactic rotation curves without the need to introduce dark matter. We show that this kind of modification also predicts short distance deviations of Newton's law at the sub-mm scale and an anomalous shift in the precession of the Moon's orbit around the Earth, both effects of a size that is less than an order of magnitude below current bounds.Comment: 6 pages, to appear in proceedings of the XLIrst Rencontres de Morion

    Dynamical mass generation by source inversion: calculating the mass gap of the chiral Gross-Neveu model

    Get PDF
    We probe the U(N) chiral Gross-Neveu model with a source-term J\l{\Psi}\Psi. We find an expression for the renormalization scheme and scale invariant source J^\hat{J}, as a function of the generated mass gap. The expansion of this function is organized in such a way that all scheme and scale dependence is reduced to one single parameter dd. We obtain a non-perturbative mass gap as the solution of J^=0\hat{J}=0. A physical choice for dd gives good results for N>2N>2. The self-consistent minimal sensitivity condition gives a slight improvement.Comment: 14 pages, 2 figure

    Edge theories in Projected Entangled Pair State models

    Get PDF
    We study the edge physics of gapped quantum systems in the framework of Projected Entangled Pair State (PEPS) models. We show that the effective low-energy model for any region acts on the entanglement degrees of freedom at the boundary, corresponding to physical excitations located at the edge. This allows us to determine the edge Hamiltonian in the vicinity of PEPS models, and we demonstrate that by choosing the appropriate bulk perturbation, the edge Hamiltonian can exhibit a rich phase diagram and phase transitions. While for models in the trivial phase any Hamiltonian can be realized at the edge, we show that for topological models, the edge Hamiltonian is constrained by the topological order in the bulk which can e.g. protect a ferromagnetic Ising chain at the edge against spontaneous symmetry breaking.Comment: 5 pages, 4 figure

    Dynamical mass generation by source inversion: Calculating the mass gap of the Gross-Neveu model

    Get PDF
    We probe the U(N) Gross-Neveu model with a source-term JΨˉΨJ\bar{\Psi}\Psi. We find an expression for the renormalization scheme and scale invariant source J^\hat{J}, as a function of the generated mass gap. The expansion of this function is organized in such a way that all scheme and scale dependence is reduced to one single parameter d. We get a non-perturbative mass gap as the solution of J^=0\hat{J}=0. In one loop we find that any physical choice for d gives good results for high values of N. In two loops we can determine d self-consistently by the principle of minimal sensitivity and find remarkably accurate results for N>2.Comment: 13 pages, 3 figures, added referenc

    Dynamical mass generation in quantum field theory : some methods with application to the Gross-Neveu model and Yang-Mills theory

    Full text link
    We introduce some techniques to investigate dynamical mass generation. The Gross-Neveu model (GN) is used as a toy model, because the GN mass gap is exactly known, making it possible to check reliability of the various methods. Very accurate results are obtained. Also application to SU(N) Yang-Mills (YM) is discussed.Comment: 8 LaTeX2e pages, uses Kluwer class file crckbked.cls. Kluwer package included. To appear in: Proceedings of the NATO Advanced Research Workshop on "Confinement, Topology, and other Non-Perturbative Aspects of QCD", Stara Lesna, Slovakia, 21-27 jan 200

    The non-perturbative groundstate of Q.C.D and the local composite operator A_mu^2

    Get PDF
    We investigate the possibility that the dimension 2 condensate A_mu^2 has a non zero non-perturbative value in Yang-Mills theory. We introduce a multiplicatively renormalisable effective potential for this condensate and show through two loop calculations that a non zero condensate is energetically favoured.Comment: 12 page

    The mass gap and vacuum energy of the Gross-Neveu model via the 2PPI expansion

    Get PDF
    We introduce the 2PPI (2-point-particle-irreducible) expansion, which sums bubble graphs to all orders. We prove the renormalizibility of this summation. We use it on the Gross-Neveu model to calculate the mass gap and vacuum energy. After an optimization of the expansion, the final results are qualitatively good.Comment: 14 pages,19 eps figures, revtex

    Dark Energy, scalar-curvature couplings and a critical acceleration scale

    Full text link
    We study the effects of coupling a cosmologically rolling scalar field to higher order curvature terms. We show that when the strong coupling scale of the theory is on the 10^{-3}-10^{-1}eV range, the model passes all experimental bounds on the existence of fifth forces even if the field has a mass of the order of the Hubble scale in vacuum and non-suppressed couplings to SM fields. The reason is that the coupling to certain curvature invariant acts as an effective mass that grows in regions of large curvature. This prevents the field from rolling down its potential near sources and makes its effects on fifth-force search experiments performed in the laboratory to be observable only at the sub-mm scale. We obtain the static spherically symmetric solutions of the theory and show that a long-range force appears but it is turned on only below a fixed Newtonian acceleration scale of the order of the Hubble constant. We comment on the possibility of using this feature of the model to alleviate the CDM small scale crisis and on its possible relation to MOND.Comment: 12 pages, 2 figure

    Supernovae data and perturbative deviation from homogeneity

    Full text link
    We show that a spherically symmetric perturbation of a dust dominated Ω=1\Omega=1 FRW universe in the Newtonian gauge can lead to an apparent acceleration of standard candles and provide a fit to the magnitude-redshift relation inferred from the supernovae data, while the perturbation in the gravitational potential remains small at all scales. We also demonstrate that the supernovae data does not necessarily imply the presence of some additional non-perturbative contribution by showing that any Lemaitre-Tolman-Bondi model fitting the supernovae data (with appropriate initial conditions) will be equivalent to a perturbed FRW spacetime along the past light cone.Comment: 8 pages, 3 figures; v2: 1 figure added, references added/updated, minor modifications and clarifications, matches published versio
    • …
    corecore