1,156 research outputs found
Has the frequency of bleeding changed over time for patients presenting with an acute coronary syndrome? The Global Registry of Acute Coronary Events
AIMS: To determine whether changes in practice, over time, are associated with altered rates of major bleeding in acute coronary syndromes (ACS). METHODS AND RESULTS: Patients from the Global Registry of Acute Coronary Events were enrolled between 2000 and 2007. The main outcome measures were frequency of major bleeding, including haemorrhagic stroke, over time, after adjustment for patient characteristics, and impact of major bleeding on death and myocardial infarction. Of the 50 947 patients, 2.3% sustained a major bleed; almost half of these presented with ST-elevation ACS (44%, 513). Despite changes in antithrombotic therapy (increasing use of low molecular weight heparin, P < 0.0001), thienopyridines (P < 0.0001), and percutaneous coronary interventions (P < 0.0001), frequency of major bleeding for all ACS patients decreased (2.6 to 1.8%; P < 0.0001). Most decline was seen in ST-elevation ACS (2.9 to 2.1%, P = 0.02). The overall decline remained after adjustment for patient characteristics and treatments (P = 0.002, hazard ratio 0.94 per year, 95% confidence interval 0.91-0.98). Hospital characteristics were an independent predictor of bleeding (P < 0.0001). Patients who experienced major bleeding were at increased risk of death within 30 days from admission, even after adjustment for baseline variables. CONCLUSION: Despite increasing use of more intensive therapies, there was a decline in the rate of major bleeding associated with changes in clinical practice. However, individual hospital characteristics remain an important determinant of the frequency of major bleeding
Dark Matter Model Selection and the ATIC/PPB-BETS anomaly
We argue that we may be able to sort out dark matter models in which
electrons are generated through the annihilation and/or decay of dark matter,
by using a fact that the initial energy spectrum is reflected in the cosmic-ray
electron flux observed at the Earth even after propagation through the galactic
magnetic field. To illustrate our idea we focus on three representative initial
spectra: (i)monochromatic (ii)flat and (iii)double-peak ones. We find that
those three cases result in significantly different energy spectra, which may
be probed by the Fermi satellite in operation or an up-coming cosmic-ray
detector such as CALET.Comment: 19 pages, 8 figure
Magnetic Fields, Relativistic Particles, and Shock Waves in Cluster Outskirts
It is only now, with low-frequency radio telescopes, long exposures with
high-resolution X-ray satellites and gamma-ray telescopes, that we are
beginning to learn about the physics in the periphery of galaxy clusters. In
the coming years, Sunyaev-Zeldovich telescopes are going to deliver further
great insights into the plasma physics of these special regions in the
Universe. The last years have already shown tremendous progress with detections
of shocks, estimates of magnetic field strengths and constraints on the
particle acceleration efficiency. X-ray observations have revealed shock fronts
in cluster outskirts which have allowed inferences about the microphysical
structure of shocks fronts in such extreme environments. The best indications
for magnetic fields and relativistic particles in cluster outskirts come from
observations of so-called radio relics, which are megaparsec-sized regions of
radio emission from the edges of galaxy clusters. As these are difficult to
detect due to their low surface brightness, only few of these objects are
known. But they have provided unprecedented evidence for the acceleration of
relativistic particles at shock fronts and the existence of muG strength fields
as far out as the virial radius of clusters. In this review we summarise the
observational and theoretical state of our knowledge of magnetic fields,
relativistic particles and shocks in cluster outskirts.Comment: 34 pages, to be published in Space Science Review
System Size and Energy Dependence of Jet-Induced Hadron Pair Correlation Shapes in Cu+Cu and Au+Au Collisions at sqrt(s_NN) = 200 and 62.4 GeV
We present azimuthal angle correlations of intermediate transverse momentum
(1-4 GeV/c) hadrons from {dijets} in Cu+Cu and Au+Au collisions at sqrt(s_NN) =
62.4 and 200 GeV. The away-side dijet induced azimuthal correlation is
broadened, non-Gaussian, and peaked away from \Delta\phi=\pi in central and
semi-central collisions in all the systems. The broadening and peak location
are found to depend upon the number of participants in the collision, but not
on the collision energy or beam nuclei. These results are consistent with sound
or shock wave models, but pose challenges to Cherenkov gluon radiation models.Comment: 464 authors from 60 institutions, 6 pages, 3 figures, 2 tables.
Submitted to Physical Review Letters. Plain text data tables for the points
plotted in figures for this and previous PHENIX publications are (or will be)
publicly available at http://www.phenix.bnl.gov/papers.htm
Origins of the Ambient Solar Wind: Implications for Space Weather
The Sun's outer atmosphere is heated to temperatures of millions of degrees,
and solar plasma flows out into interplanetary space at supersonic speeds. This
paper reviews our current understanding of these interrelated problems: coronal
heating and the acceleration of the ambient solar wind. We also discuss where
the community stands in its ability to forecast how variations in the solar
wind (i.e., fast and slow wind streams) impact the Earth. Although the last few
decades have seen significant progress in observations and modeling, we still
do not have a complete understanding of the relevant physical processes, nor do
we have a quantitatively precise census of which coronal structures contribute
to specific types of solar wind. Fast streams are known to be connected to the
central regions of large coronal holes. Slow streams, however, appear to come
from a wide range of sources, including streamers, pseudostreamers, coronal
loops, active regions, and coronal hole boundaries. Complicating our
understanding even more is the fact that processes such as turbulence,
stream-stream interactions, and Coulomb collisions can make it difficult to
unambiguously map a parcel measured at 1 AU back down to its coronal source. We
also review recent progress -- in theoretical modeling, observational data
analysis, and forecasting techniques that sit at the interface between data and
theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue
connected with a 2016 ISSI workshop on "The Scientific Foundations of Space
Weather." 44 pages, 9 figure
Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration
Extensive experimental data from high-energy nucleus-nucleus collisions were
recorded using the PHENIX detector at the Relativistic Heavy Ion Collider
(RHIC). The comprehensive set of measurements from the first three years of
RHIC operation includes charged particle multiplicities, transverse energy,
yield ratios and spectra of identified hadrons in a wide range of transverse
momenta (p_T), elliptic flow, two-particle correlations, non-statistical
fluctuations, and suppression of particle production at high p_T. The results
are examined with an emphasis on implications for the formation of a new state
of dense matter. We find that the state of matter created at RHIC cannot be
described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted
to Nuclear Physics A as a regular article; v3 has minor changes in response
to referee comments. Plain text data tables for the points plotted in figures
for this and previous PHENIX publications are (or will be) publicly available
at http://www.phenix.bnl.gov/papers.htm
Single Electrons from Heavy Flavor Decays in p+p Collisions at sqrt(s) = 200 GeV
The invariant differential cross section for inclusive electron production in
p+p collisions at sqrt(s) = 200 GeV has been measured by the PHENIX experiment
at the Relativistic Heavy Ion Collider over the transverse momentum range $0.4
<= p_T <= 5.0 GeV/c at midrapidity (eta <= 0.35). The contribution to the
inclusive electron spectrum from semileptonic decays of hadrons carrying heavy
flavor, i.e. charm quarks or, at high p_T, bottom quarks, is determined via
three independent methods. The resulting electron spectrum from heavy flavor
decays is compared to recent leading and next-to-leading order perturbative QCD
calculations. The total cross section of charm quark-antiquark pair production
is determined as sigma_(c c^bar) = 0.92 +/- 0.15 (stat.) +- 0.54 (sys.) mb.Comment: 329 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett.
Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Nuclear Modification of Electron Spectra and Implications for Heavy Quark Energy Loss in Au+Au Collisions at sqrt(s_NN)=200 GeV
The PHENIX experiment has measured mid-rapidity transverse momentum spectra
(0.4 < p_T < 5.0 GeV/c) of electrons as a function of centrality in Au+Au
collisions at sqrt(s_NN)=200 GeV. Contributions from photon conversions and
from light hadron decays, mainly Dalitz decays of pi^0 and eta mesons, were
removed. The resulting non-photonic electron spectra are primarily due to the
semi-leptonic decays of hadrons carrying heavy quarks. Nuclear modification
factors were determined by comparison to non-photonic electrons in p+p
collisions. A significant suppression of electrons at high p_T is observed in
central Au+Au collisions, indicating substantial energy loss of heavy quarks.Comment: 330 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett.
Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
- …