188 research outputs found

    Effects of accidental microconstriction on the quantized conductance in long wires

    Full text link
    We have investigated the conductance of long quantum wires formed in GaAs/AlGaAs heterostructures. Using realistic fluctuation potentials from donor layers we have simulated numerically the conductance of four different kinds of wires. While ideal wires show perfect quantization, potential fluctuations from random donors may give rise to strong conductance oscillations and degradation of the quantization plateaux. Statistically there is always the possibility of having large fluctuations in a sample that may effectively act as a microconstriction. We therefore introduce microconstrictions in the wires by occasional clustering of donors. These microconstrictions are found to restore the quantized plateaux. A similar effect is found for accidental lithographic inaccuracies.Comment: 4 pages, 2 figures, paper for NANO2002 symposium, will appear in SPIE proceeding

    A prototype of an autonomous controller for a quadrotor UAV

    Get PDF
    The paper proposes a complete real-time control algorithm for autonomous collision-free operations of the quadrotor UAV. As opposed to fixed wing vehicles the quadrotor is a small agile vehicle which might be more suitable for the variety of specific applications including search and rescue, surveillance and remote inspection. The developed control system incorporates both trajectory planning and path following. Using a differential flatness property the trajectory planning is posed as a constrained optimization problem in the output space (as opposed to the control space), which simplifies the problem. The trajectory and speed profile are parameterized to reduce the problem to a finite dimensional problem. To optimize the speed profile independently of the trajectory a virtual argument is used as opposed to time. A path following portion of the proposed algorithm uses a standard linear multi-variable control technique. The paper presents the results of simulations to demonstrate the suitability of the proposed control algorithm

    Hadron Resonance Gas Model with Induced Surface Tension

    Full text link
    Here we present a physically transparent generalization of the multicomponent Van der Waals equation of state in the grand canonical ensemble. For the one-component case the third and fourth virial coefficients are calculated analytically. It is shown that an adjustment of a single model parameter allows us to reproduce the third and fourth virial coefficients of the gas of hard spheres with small deviations from their exact values. A thorough comparison of the compressibility factor and speed of sound of the developed model with the one and two component Carnahan-Starling equation of state is made. It is shown that the model with the induced surface tension is able to reproduce the results of the Carnahan-Starling equation of state up to the packing fractions 0.2-0.22 at which the usual Van der Waals equation of state is inapplicable. At higher packing fractions the developed equation of state is softer than the gas of hard spheres and, hence, it breaks causality in the domain where the hadronic description is expected to be inapplicable. Using this equation of state we develop an entirely new hadron resonance gas model and apply it to a description of the hadron yield ratios measured at AGS, SPS, RHIC and ALICE energies of nuclear collisions. The achieved quality of the fit per degree of freedom is about 1.08. We confirm that the strangeness enhancement factor has a peak at low AGS energies, while at and above the highest SPS energy of collisions the chemical equilibrium of strangeness is observed. We argue that the chemical equilibrium of strangeness, i.e. γs≃1\gamma_s \simeq 1, observed above the center of mass collision energy 4.3 GeV may be related to the hadronization of quark gluon bags which have the Hagedorn mass spectrum, and, hence, it may be a new signal for the onset of deconfinement

    Experimental Observation of Energy Modulation in Electron Beams Passing Through Terahertz Dielectric Wakefield Structures

    Full text link
    We report observation of a strong wakefield induced energy modulation in an energy-chirped electron bunch passing through a dielectric-lined waveguide. This modulation can be effectively converted into a spatial modulation forming micro-bunches with a periodicity of 0.5 - 1 picosecond, hence capable of driving coherent THz radiation. The experimental results agree well with theoretical predictions.Comment: v3. Reviewers' suggestions incorporated. Accepted by PR

    Stable vortex structures in colliding self-gravitating Bose-Einstein condensates

    Full text link
    A key feature of ultra-light dark matter composed by bosons is the formation of superfluid Bose-Einstein condensate (BEC) structures on galactic scales. We study collisions of BEC solitonic and vortex structures in the framework of the Gross-Pitaevskii-Poisson model. It is found that the superfluid nature of bosonic dark matter leads to the formation of quantized vortex lines and vortex rings in interference patterns formed during collisions. Calculating the gravitational wave luminosity, we demonstrated that quantum interference patterns affect notably the gravitational wave radiation. We reveal that superfluid self-gravitating BECs can form stable localized vortex structures which remain robust even after a head-on collision.Comment: 9 pages, 8 figure

    Experimental demonstration of wakefield effects in a THz planar diamond accelerating structure

    Full text link
    We have directly measured THz wakefields induced by a subpicosecond, intense relativistic electron bunch in a diamond loaded accelerating structure via the wakefield acceleration method. We present here the beam test results from the first diamond based structure. Diamond has been chosen for its high breakdown threshold and unique thermoconductive properties. Fields produced by a leading (drive) beam were used to accelerate a trailing (witness) electron bunch which followed the drive bunch at a variable distance. The energy gain of a witness bunch as a function of its separation from the drive bunch describes the time structure of the generated wakefield.Comment: v3, accepted by APL. Updated to reflect reviewers' comment
    • …
    corecore