145 research outputs found

    Environmental controls on daytime net community calcification on a Red Sea reef flat

    Get PDF
    Coral growth and carbonate accumulation form the foundation of the coral reef ecosystem. Changes in environmental conditions due to coastal development, climate change, and ocean acidification may pose a threat to net carbonate production in the near future. Controlled laboratory studies demonstrate that calcification by corals and coralline algae is sensitive to changes in aragonite saturation state (Ωa), as well as temperature, light, and nutrition. Studies also show that the dissolution rate of carbonate substrates is impacted by changes in carbonate chemistry. The sensitivity of coral reefs to these parameters must be confirmed and quantified in the natural environment in order to predict how coral reefs will respond to local and global changes, particularly ocean acidification. We estimated the daytime hourly net community metabolic rates, both net community calcification (NCC) and net community productivity (NCP), at Sheltered Reef, an offshore platform reef in the central Red Sea. Average NCC was 8 ± 3 mmol m[superscript −2] h[superscript −1] in December 2010 and 11 ± 1 mmol m[superscript −2] h[superscript −1] in May 2011, and NCP was 21 ± 7 mmol m[superscript −2] h[superscript −1] in December 2010 and 44 ± 4 mmol m[superscript −2] h[superscript −1] in May 2011. We also monitored a suite of physical and chemical properties to help relate the rates at Sheltered Reef to published rates from other sites. While previous research shows that short-term field studies investigating the NCC–Ωa relationship have differing results due to confounding factors, it is important to continue estimating NCC in different places, seasons, and years, in order to monitor changes in NCC versus Ω in space and time, and to ultimately resolve a broader understanding of this relationship.National Science Foundation (U.S.) (Graduate Research Fellowship

    Late glacial 14C ages from a floating, 1382-ring pine chronology

    Get PDF
    Author Posting. © Arizona Board of Regents on behalf of the University of Arizona, 2004. This article is posted here by permission of Dept. of Geosciences, University of Arizona for personal use, not for redistribution. The definitive version was published in Radiocarbon 46 (2004): 1203-1209.We built a floating, 1382-ring pine chronology covering the radiocarbon age interval of 12,000 to 10,650 BP. Based on the strong rise of Δ14C at the onset of the Younger Dryas (YD) and wiggle-matching of the decadal-scale Δ14C fluctuations, we can anchor the floating chronology to the Cariaco varve chronology. We observe a marine reservoir correction higher than hitherto assumed for the Cariaco site, of up to 650 yr instead of 400 yr, for the full length of the comparison interval. The tree-ring Δ14C shows several strong fluctuations of short duration (a few decades) at 13,800; 13,600; and 13,350 cal BP. The amplitude of the strong Δ14C rise at the onset of the YD is about 40‰, whereas in the marine data set the signal appears stronger due to a re-adjustment of the marine mixed-layer Δ14C towards the atmospheric level.B K and M F received funding for this work from the German Ministry of Education and Research (BMBF, DEKLIM program) and from the German Research Foundation (DFG; KU 592/29-1)

    2008: Sea surface temperature and salinity variability at Bermuda during the end of the Little Ice Age

    Get PDF
    [1] We use geochemical and isotope measurements on a 225-year old brain coral (Diploria labyrinthiformis) from the south shore of Bermuda (64°W, 32°N) to construct a record of decadal-to-centennial-scale climate variability. The coral was collected alive, and annual density bands visible in X radiographs delineate cold and warm seasons allowing for precise dating. Coral skeletons incorporate strontium (Sr) and calcium (Ca) in relative proportions inversely to the sea surface temperature (SST) in which the skeleton is secreted. Previous studies on this and other coral colonies from this region document the ability to reconstruct mean annual and wintertime SST using Sr/Ca measurements 18 O of seawater (dO w ), where dO w is proportional to sea surface salinity (SSS). We show in this study that mean annual and wintertime d 18 O of the carbonate (dO c ) are correlated to both SST and SSS, but a robust, quantitative measure of SSS is not found with present calibration data. In combination, however, the Sr/Ca and dO c qualitatively reconstruct lower salinities at the end of the Little Ice Age relative to modern day. Temperature changes agree with other records from the Bermuda region. Radiative and atmospheric forcing may explain some of the SST variability, but the scales of implied changes in SST and SSS indicate large-scale ocean circulation impacts as well

    Obliquity-driven expansion of North Atlantic sea ice during the last glacial

    Get PDF
    Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 42 (2015): 10,382–10,390, doi:10.1002/2015GL066344.North Atlantic late Pleistocene climate (60,000 to 11,650 years ago) was characterized by abrupt and extreme millennial duration oscillations known as Dansgaard-Oeschger (D-O) events. However, during the Last Glacial Maximum (LGM) 23,000 to 19,000 cal years ago (23 to 19 ka), no D-O events are observed in the Greenland ice cores. Our new analysis of the Greenland ÎŽ18O record reveals a switch in the stability of the climate system around 30 ka, suggesting that a critical threshold was passed. Climate system modeling suggests that low axial obliquity at this time caused vastly expanded sea ice in the Labrador Sea, shifting Northern Hemisphere westerly winds south and reducing the strength of meridional overturning circulation. The results suggest that these feedbacks tipped the climate system into full glacial conditions, leading to maximum continental ice growth during the LGM.Australian Research Council2016-06-1

    Punctuated Shutdown of Atlantic Meridional Overturning Circulation during Greenland Stadial 1.

    Full text link
    The Greenland Stadial 1 (GS-1; ~12.9 to 11.65 kyr cal BP) was a period of North Atlantic cooling, thought to have been initiated by North America fresh water runoff that caused a sustained reduction of North Atlantic Meridional Overturning Circulation (AMOC), resulting in an antiphase temperature response between the hemispheres (the 'bipolar seesaw'). Here we exploit sub-fossil New Zealand kauri trees to report the first securely dated, decadally-resolved atmospheric radiocarbon ((14)C) record spanning GS-1. By precisely aligning Southern and Northern Hemisphere tree-ring (14)C records with marine (14)C sequences we document two relatively short periods of AMOC collapse during the stadial, at ~12,920-12,640 cal BP and 12,050-11,900 cal BP. In addition, our data show that the interhemispheric atmospheric (14)C offset was close to zero prior to GS-1, before reaching 'near-modern' values at ~12,660 cal BP, consistent with synchronous recovery of overturning in both hemispheres and increased Southern Ocean ventilation. Hence, sustained North Atlantic cooling across GS-1 was not driven by a prolonged AMOC reduction but probably due to an equatorward migration of the Polar Front, reducing the advection of southwesterly air masses to high latitudes. Our findings suggest opposing hemispheric temperature trends were driven by atmospheric teleconnections, rather than AMOC changes

    IntCal09 and Marine09 radiocarbon age calibration curves, 0-50,000yeats cal BP

    Get PDF
    The IntCal04 and Marine04 radiocarbon calibration curves have been updated from 12 cal kBP (cal kBP is here defined as thousands of calibrated years before AD 1950), and extended to 50 cal kBP, utilizing newly available data sets that meet the IntCal Working Group criteria for pristine corals and other carbonates and for quantification of uncertainty in both the 14C and calendar timescales as established in 2002. No change was made to the curves from 0–12 cal kBP. The curves were constructed using a Markov chain Monte Carlo (MCMC) implementation of the random walk model used for IntCal04 and Marine04. The new curves were ratified at the 20th International Radiocarbon Conference in June 2009 and are available in the Supplemental Material at www.radiocarbon.org

    Rapid global ocean-atmosphere response to Southern Ocean freshening during the last glacial

    Get PDF
    This is the final version of the article. Available from Springer Nature via the DOI in this record.Contrasting Greenland and Antarctic temperatures during the last glacial period (115,000 to 11,650 years ago) are thought to have been driven by imbalances in the rates of formation of North Atlantic and Antarctic Deep Water (the 'bipolar seesaw'). Here we exploit a bidecadally resolved (14)C data set obtained from New Zealand kauri (Agathis australis) to undertake high-precision alignment of key climate data sets spanning iceberg-rafted debris event Heinrich 3 and Greenland Interstadial (GI) 5.1 in the North Atlantic (~30,400 to 28,400 years ago). We observe no divergence between the kauri and Atlantic marine sediment (14)C data sets, implying limited changes in deep water formation. However, a Southern Ocean (Atlantic-sector) iceberg rafted debris event appears to have occurred synchronously with GI-5.1 warming and decreased precipitation over the western equatorial Pacific and Atlantic. An ensemble of transient meltwater simulations shows that Antarctic-sourced salinity anomalies can generate climate changes that are propagated globally via an atmospheric Rossby wave train.A challenge for testing mechanisms of past climate change is the precise correlation of palaeoclimate records. Here, through climate modelling and the alignment of terrestrial, ice and marine (14)C and (10)Be records, the authors show that Southern Ocean freshwater hosing can trigger global change.This work was funded by the Australian Research Council (FL100100195, DP170104665 and SR140300001) and the Natural Environment Research Council (NE/H009922/1 and NE/H007865/1)

    Late Little Ice Age palaeoenvironmental records from the Anzali and Amirkola Lagoons (south Caspian Sea): Vegetation and sea level changes

    Get PDF
    This is a postprint version of the article. The official published article can be found from the link below - Copyright @ 2011 Elsevier Ltd.Two internationally important Ramsar lagoons on the south coast of the Caspian Sea (CS) have been studied by palynology on short sediment cores for palaeoenvironmental and palaeoclimatic investigations. The sites lie within a small area of very high precipitation in a region that is otherwise dry. Vegetation surveys and geomorphological investigations have been used to provide a background to a multidisciplinary interpretation of the two sequences covering the last four centuries. In the small lagoon of Amirkola, the dense alder forested wetland has been briefly disturbed by fire, followed by the expansion of rice paddies from AD1720 to 1800. On the contrary, the terrestrial vegetation reflecting the diversity of the Hyrcanian vegetation around the lagoon of Anzali remained fairly complacent over time. The dinocyst and non-pollen palynomorph assemblages, revealing changes that have occurred in water salinity and water levels, indicate a high stand during the late Little Ice Age (LIA), from AD < 1620 to 1800–1830. In Amirkola, the lagoon spit remained intact over time, whereas in Anzali it broke into barrier islands during the late LIA, which merged into a spit during the subsequent sea level drop. A high population density and infrastructure prevented renewed breaking up of the spit when sea level reached its maximum (AD1995). Similar to other sites in the region around the southern CS, these two lagoonal investigations indicate that the LIA had a higher sea level as a result of more rainfall in the drainage basin of the CS.The coring and the sedimentological analyses were funded by the Iranian National Institute for Oceanography in the framework of a research project entitled “Investigation of the Holocene sediment along the Iranian coast of Caspian Sea: central Guilan”. The radiocarbon date of core HCGL02 was funded by V. Andrieu (EuropĂŽle MĂ©diterranĂ©en de l'Arbois, France) and that of core HCGA04 by Brunel University

    Diploastrea heliopora Sr/Ca and ÎŽ18O records from northeast Luzon, Philippines : an assessment of interspecies coral proxy calibrations and climate controls of sea surface temperature and salinity

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Paleoceanography 32 (2017): 424–438, doi:10.1002/2017PA003098.The Indo-Pacific coral Diploastrea heliopora reveals regional multidecadal- to centennial- scale climate variability using coral carbonate ÎŽ18O (ÎŽ18Oc) as a combined proxy for sea surface temperature (SST) and sea surface salinity (SSS). However, to assess the coral's full potential in resolving climatic events, an independent SST proxy would be more advantageous. We examined both Sr/Ca and ÎŽ18O of Diploastrea against an adjacent Porites lobata core collected from northeast Luzon, Philippines. Winter Sr/Ca data from Diploastrea show a significant correlation to SST (r = −0.41, p < 0.05, (root-mean-square of the residual) RMSR = 0.81°C) and provide a proxy with similar sensitivity as Porites (r = −0.57, p < 0.05, RMSR = 0.62°C). An interspecies SST record is shown to be robust and used for a reconstruction of the Pacific Decadal Oscillation during boreal winter (r = −0.70, p = 0.02). While we were unable to generate a robust Diploastrea ÎŽ18O-SSS calibration at interannual timescale, the freshening trend toward the present, commonly observed in the region, is qualitatively captured in Diploastrea ÎŽ18O. Comparison with Porites ÎŽ18O and instrumental SSS records shows that the magnitude of freshening is consistent between coral species. Wet and dry season Porites ÎŽ18O provide support for the relative influence of El Niño–Southern Oscillation events and local precipitation to SSS variability at our site. The multiproxy, multispecies approach of this study further strengthens the evidence for Diploastrea as an alternate climate archive in the Indo-Pacific region and seals its potential in helping resolve less understood global-scale climate phenomena.National Research Foundation Singapore (NRF) Grant Number: NRF-RF2012-0
    • 

    corecore