36 research outputs found
The case of the grassâeating suids in the PlioâPleistocene Turkana Basin: 3D dental topography in relation to diet in extant and fossil pigs
Two separate subfamilies of PlioâPleistocene African pigs (suids) consecutively evolved hypsodont and horizodont molars with flat occlusal surfaces, commonly interpreted as an adaptive trait to a grazing diet, similar to that of the present warthogs (Phacochoerus spp.). To investigate this in detail, we studied the 3Dâdental topography of fossil specimens from the Turkana Basin, using geographic information systemsâbased methods. To establish baselines for interpretation of the Turkana Basin suids, topography of third molars of extant suids with known diets were analyzed: grazing warthog (Phacochoerus africanus), herbivorous mixedâfeeder forest hog (Hylochoerus meinertzhageni), omnivorous generalist wild boar (Sus scrofa), omnivorous fruit and tuber eater bush pig (Potamochoerus spp.), and omnivorous fruit eater babirusa (Babyrousa spp.) In addition, we analyzed supposedly browsing Miocene suids, Listriodon spp. The same topographic measures were applied to PlioâPleistocene specimens from the Turkana Basin, Kenya: Notochoerus euilus, Notochoerus scotti, Kolpochoerus heseloni, and Metridiochoerus andrewsi. With some differences between techniques, 3Dâdental topography analysis of extant suid molars mostly predicts the dietary differences between the species correctly. The grazing P. africanus differs from both the omnivorous suids and the herbivorous mixedâfeeder H. meinertzhageni in all except one metrics. The omnivorous mostly tropical suids, Potamochoerus and Babyrousa, primarily differ from the generalist, S. scrofa, in the orientation patch count analysis, showing higher occlusal complexity in the latter. Although, there might be significant gaps between the morphological changes and the ecological changes, we conclude that based on comparison of dental topography with the presentâday suids, N. scotti and M. andrewsi were most likely highly specialized grazers, while N. euilus and K. heseloni retained more of their ancestral, omnivorous heritage, but consumed grasses more than the extant omnivorous suids