31,851 research outputs found
Fault-Tolerant Quantum Dynamical Decoupling
Dynamical decoupling pulse sequences have been used to extend coherence times
in quantum systems ever since the discovery of the spin-echo effect. Here we
introduce a method of recursively concatenated dynamical decoupling pulses,
designed to overcome both decoherence and operational errors. This is important
for coherent control of quantum systems such as quantum computers. For
bounded-strength, non-Markovian environments, such as for the spin-bath that
arises in electron- and nuclear-spin based solid-state quantum computer
proposals, we show that it is strictly advantageous to use concatenated, as
opposed to standard periodic dynamical decoupling pulse sequences. Namely, the
concatenated scheme is both fault-tolerant and super-polynomially more
efficient, at equal cost. We derive a condition on the pulse noise level below
which concatenated is guaranteed to reduce decoherence.Comment: 5 pages, 4 color eps figures. v3: Minor changes. To appear in Phys.
Rev. Let
Resistivity network and structural model of the oxide cathode for CRT application
In this paper, the electrical properties of oxide cathode
and oxide cathode plus, supplied by LG Philips Displays, have been
investigated in relation to different cathode activation regimes and
methods. Oxide cathode activation treatment for different durations
has been investigated. The formations of the compounds associated
to the diffusion of reducing elements (Mg, Al, and W) to the Ni cap surface of oxide cathode were studied by a new suggestion method. Scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX) was used as analytical techniques.
Al, W, and Mg doping elements take place during heating to 1080 K (Ni-Brightness) under a rich controlled Ba–SrO atmosphere through an acceleration life test. The chemical transport of these elements was occurred mainly by the Ni cap grain boundary mechanism with significant pile-up of Mg compounds. Al and W show a superficial concentrations and distribution.
A new structural and resistivity network model of oxide cathode plus are suggested. The new structural model shows a number of metallic and metallic oxide pathways are exist at the interface or extended through the oxide coating. The effective values of the resistances
and the type of the equivalent circuit in the resistivity network
model are temperature and activation time dependent.</p
Radiolysis of Macromolecular Organic Material in Mars-Relevant Mineral Matrices
The fate of organic material on Mars after deposition is crucial to interpreting the source of these molecules. Previous work has addressed how various organic compounds at millimeter depths in sediments respond to ultraviolet radiation. In contrast, this study addressed how highenergy particle radiation (200MeV protons, simulating the effect of galactic cosmic rays and solar wind at depths of <45 cm) inuences organic macromolecules in sediments. Specically, we report the generation of organicacid radiolysis products after exposure to radiation doses equivalent to geological time scales (17 Myr). We found that formate and oxalate were produced from a variety of organic starting materials and mineral matrices. Unlike ultravioletdriven reactions that can invoke Fenton chemistry to produce organic acids, our work suggests that irradiation of semiconductor surfaces, such as TiO2 or possible clay minerals found on Mars, forms oxygen and hydroxyl radical species, which can break down macromolecules into organic acids. We also investigated the metastability of benzoate in multiple mineral matrices. Benzoate was added to samples prior to irradiation and persisted up to 500 kGys of exposure. Our ndings suggest that organic acids are likely a major component of organic material buried at depth on Mars
New Candidates for Topological Insulators : Pb-based chalcogenide series
Here, we theoretically predict that the series of Pb-based layered
chalcogenides, PbBiSe and PbSbTe, are possible
new candidates for topological insulators. As increases, the phase
transition from a topological insulator to a band insulator is found to occur
between and 3 for both series. Significantly, among the new topological
insulators, we found a bulk band gap of 0.40eV in PbBiSe which is one
of the largest gap topological insulators, and that PbSbTe is
located in the immediate vicinity of the topological phase boundary, making its
topological phase easily tunable by changing external parameters such as
lattice constants. Due to the three-dimensional Dirac cone at the phase
boundary, massless Dirac fermions also may be easily accessible in
PbSbTe
Accurate measurement of ^{13}C - ^{15}N distances with solid-state NMR
Solid-state NMR technique for measureing distances between hetero-nuclei in
static powder samples is described. It is based on a two-dimensional
single-echo scheme enhanced with adiabatic cross-polarization. As an example,
the results for intra-molecular distances in -crystalline form of
glycine are presented. The measured NMR distances ^13 C(2) - ^15 N and ^13 C(1)
- ^15 N are 1.496 0.002 \AA and 2.50 0.02 \AA, respectively.Comment: 12 page
Isotope Ratio Monitoring Gas Chromatography Mass Spectrometry (IRM-GCMS)
On Earth, the C-13 content of organic compounds is depleted by roughly 13 to 23 permil from atmospheric carbon dioxide. This difference is largely due to isotope effects associated with the fixation of inorganic carbon by photosynthetic organisms. If life once existed on Mars, then it is reasonable to expect to observe a similar fractionation. Although the strongly oxidizing conditions on the surface of Mars make preservation of ancient organic material unlikely, carbon-isotope evidence for the existence of life on Mars may still be preserved. Carbon depleted in C-13 could be preserved either in organic compounds within buried sediments, or in carbonate minerals produced by the oxidation of organic material. A technique is introduced for rapid and precise measurement of the C-13 contents of individual organic compounds. A gas chromatograph is coupled to an isotope-ratio mass spectrometer through a combustion interface, enabling on-line isotopic analysis of isolated compounds. The isotope ratios are determined by integration of ion currents over the course of each chromatographic peak. Software incorporates automatic peak determination, corrections for background, and deconvolution of overlapped peaks. Overall performance of the instrument was evaluated by the analysis of a mixture of high purity n-alkanes of know isotopic composition. Isotopic values measured via IRM-GCMS averaged withing 0.55 permil of their conventionally measured values
The intrinsic strangeness and charm of the nucleon using improved staggered fermions
We calculate the intrinsic strangeness of the nucleon, - ,
using the MILC library of improved staggered gauge configurations using the
Asqtad and HISQ actions. Additionally, we present a preliminary calculation of
the intrinsic charm of the nucleon using the HISQ action with dynamical charm.
The calculation is done with a method which incorporates features of both
commonly-used methods, the direct evaluation of the three-point function and
the application of the Feynman- Hellman theorem. We present an improvement on
this method that further reduces the statistical error, and check the result
from this hybrid method against the other two methods and find that they are
consistent. The values for and found here, together with
perturbative results for heavy quarks, show that dark matter scattering through
Higgs-like exchange receives roughly equal contributions from all heavy quark
flavors.Comment: 17 pages, 14 figure
Robust Logic Gates and Realistic Quantum Computation
The composite rotation approach has been used to develop a range of robust
quantum logic gates, including single qubit gates and two qubit gates, which
are resistant to systematic errors in their implementation. Single qubit gates
based on the BB1 family of composite rotations have been experimentally
demonstrated in a variety of systems, but little study has been made of their
application in extended computations, and there has been no experimental study
of the corresponding robust two qubit gates to date. Here we describe an
application of robust gates to Nuclear Magnetic Resonance (NMR) studies of
approximate quantum counting. We find that the BB1 family of robust gates is
indeed useful, but that the related NB1, PB1, B4 and P4 families of tailored
logic gates are less useful than initially expected.Comment: 6 pages RevTex4 including 5 figures (3 low quality to save space).
Revised at request of referee and incorporting minor corrections and updates.
Now in press at Phys Rev
Development of the Magnetic Excitations of Charge-Stripe Ordered La(2-x)Sr(x)NiO(4) on Doping Towards Checkerboard Charge Order
The magnetic excitation spectrums of charge stripe ordered La(2-x)Sr(x)NiO(4)
x = 0.45 and x = 0.4 were studied by inelastic neutron scattering. We found the
magnetic excitation spectrum of x = 0.45 from the ordered Ni^2+ S = 1 spins to
match that of checkerboard charge ordered La(1.5)Sr(0.5)NiO(4). The distinctive
asymmetry in the magnetic excitations above 40 meV was observed for both doping
levels, but an additional ferromagnetic mode was observed in x = 0.45 and not
in the x = 0.4. We discuss the origin of crossover in the excitation spectrum
between x = 0.45 and x = 0.4 with respect to discommensurations in the charge
stripe structure.Comment: 4 Figures. To be appear in the J. Kor. Phys. Soc. as a proceedings
paper from the ICM 2012 conferenc
The planetary nebula population in the halo of M87
We investigate the diffuse light in the outer regions of the nearby
elliptical galaxy M87 in the Virgo cluster, using planetary nebulas (PNs) as
tracers. The surveyed areas (0.43 squared degrees) cover M87 up to a radial
distance of 150 kpc, in the ransition region between galaxy halo and
intracluster light (ICL). All PNs are identified through the on-off band
technique using automatic selection criteria based on the distribution of the
detected sources in the colour-magnitude diagram and the properties of their
point-spread function. We extract a catalogue of 688 objects down to
m_5007=28.4, with an estimated residual contamination from foreground stars and
background Lyalpha galaxies, which amounts to ~35% of the sample. This is one
of the largest extragalactic PN samples in number of candidates, magnitude
depth, and radial extent, which allows us to carry out an unprecedented
photometric study of the PN population in the outer regions of M87. We find
that the logarithmic density profile of the PN distribution is shallower than
the surface brightness profile at large radii. This behaviour is consistent
with the superposition of two components associated with the halo of M87 and
with the ICL, which have different luminosity specific PN numbers, the ICL
contributing three times more PNs per unit light. Because of the depth of this
survey we are also able to study the shape of the PN luminosity function (PNLF)
in the outer regions of M87. We find a slope for the PNLF that is steeper at
fainter magnitudes than the standard analytical PNLF formula and adopt a
generalised model that treats the slope as a free parameter. Comparing the PNLF
of M87 and the M31 bulge, both normalised by the sampled luminosity, the M87
PNLF contains fewer bright PNs and has a steeper slope towards fainter
magnitudes.Comment: 16 pages, 13 figures, 5 tables, accepted for publication in A&
- …