4 research outputs found

    Dual Band-Notched Microstrip-Fed Vivaldi Antenna Utilizing Compact EBG Structures

    Get PDF
    We propose an ultra-wideband (UWB) antipodal Vivaldi antenna (AVA) with high-Q stopband characteristics based on compact electromagnetic bandgap (EBG) structures. First, an AVA is designed and optimized to operate over an UWB spectrum. Then, two pairs of EBG cells are introduced along the antenna feed line to suppress the frequency components at 3.6–3.9 and 5.6–5.8 GHz (i.e., WiMAX and ISM bands, resp.). Simulated and measured results show a voltage standing wave ratio (VSWR) below 2 for the entire 3.1–10.6 GHz band with high attenuation at the two selected subbands. This simple yet effective approach eliminates the need to deform the antenna radiators with slots/parasitic elements or comprise multilayer substrates. Furthermore, the flexibility it offers in terms of controlling both the number and locations of the band-reject frequencies is advantageous for antennas with nonuniform flares as in the AVA

    Emerging Importance of Survivin in Stem Cells and Cancer: the Development of New Cancer Therapeutics

    No full text
    corecore