498 research outputs found
Mode-by-mode summation for the zero point electromagnetic energy of an infinite cylinder
Using the mode-by-mode summation technique the zero point energy of the
electromagnetic field is calculated for the boundary conditions given on the
surface of an infinite solid cylinder. It is assumed that the dielectric and
magnetic characteristics of the material which makes up the cylinder
and of that which makes up the surroundings obey the relation . With this
assumption all the divergences cancel. The divergences are regulated by making
use of zeta function techniques. Numerical calculations are carried out for a
dilute dielectric cylinder and for a perfectly conducting cylindrical shell.
The Casimir energy in the first case vanishes, and in the second is in complete
agreement with that obtained by DeRaad and Milton who employed a Green's
function technique with an ultraviolet regulator.Comment: REVTeX, 16 pages, no figures and tables; transcription error in
previous version corrected, giving a zero Casimir energy for a tenuous
cylinde
Casimir Energy for Spherical boundaries
Calculations of the Casimir energy for spherical geometries which are based
on integrations of the stress tensor are critically examined. It is shown that
despite their apparent agreement with numerical results obtained from mode
summation methods, they contain a number of serious errors. Specifically, these
include (1) an improper application of the stress tensor to spherical
boundaries, (2) the neglect of pole terms in contour integrations, and (3) the
imposition of inappropriate boundary conditions upon the relevant propagators.
A calculation which is based on the stress tensor and which avoids such
problems is shown to be possible. It is, however, equivalent to the mode
summation method and does not therefore constitute an independent calculation
of the Casimir energy.Comment: Revtex, 7 pages, Appendix added providing details of failure of
stress tensor metho
Casimir Energy for a Spherical Cavity in a Dielectric: Applications to Sonoluminescence
In the final few years of his life, Julian Schwinger proposed that the
``dynamical Casimir effect'' might provide the driving force behind the
puzzling phenomenon of sonoluminescence. Motivated by that exciting suggestion,
we have computed the static Casimir energy of a spherical cavity in an
otherwise uniform material. As expected the result is divergent; yet a
plausible finite answer is extracted, in the leading uniform asymptotic
approximation. This result agrees with that found using zeta-function
regularization. Numerically, we find far too small an energy to account for the
large burst of photons seen in sonoluminescence. If the divergent result is
retained, it is of the wrong sign to drive the effect. Dispersion does not
resolve this contradiction. In the static approximation, the Fresnel drag term
is zero; on the mother hand, electrostriction could be comparable to the
Casimir term. It is argued that this adiabatic approximation to the dynamical
Casimir effect should be quite accurate.Comment: 23 pages, no figures, REVTe
Vector Casimir effect for a D-dimensional sphere
The Casimir energy or stress due to modes in a D-dimensional volume subject
to TM (mixed) boundary conditions on a bounding spherical surface is
calculated. Both interior and exterior modes are included. Together with
earlier results found for scalar modes (TE modes), this gives the Casimir
effect for fluctuating ``electromagnetic'' (vector) fields inside and outside a
spherical shell. Known results for three dimensions, first found by Boyer, are
reproduced. Qualitatively, the results for TM modes are similar to those for
scalar modes: Poles occur in the stress at positive even dimensions, and cusps
(logarithmic singularities) occur for integer dimensions . Particular
attention is given the interesting case of D=2.Comment: 20 pages, 1 figure, REVTe
Reconsidering the quantization of electrodynamics with boundary conditions and some measurable consequences
We show that the commonly known conductor boundary conditions
can be realized in two ways which we call 'thick' and 'thin'
conductor. The 'thick' conductor is the commonly known approach and includes a
Neumann condition on the normal component of the electric field
whereas for a 'thin' conductor remains without boundary condition.
Both types describe different physics already on the classical level where a
'thin' conductor allows for an interaction between the normal components of
currents on both sides. On quantum level different forces between a conductor
and a single electron or a neutral atom result. For instance, the
Casimir-Polder force for a 'thin' conductor is by about 13% smaller than for a
'thick' one.Comment: 22 pages, basic statement weakened, conclusions changed, misprints
correcte
Casimir effect for a -dimensional sphere
The Casimir force on a -dimensional sphere due to the confinement of a
massless scalar field is computed as a function of , where is a
continuous variable that ranges from to . The dependence of
the force on the dimension is obtained using a simple and straightforward
Green's function technique. We find that the Casimir force vanishes as ( non-even integer) and also vanishes when is a negative even
integer. The force has simple poles at positive even integer values of .Comment: 22 pages, REVTeX, 4 uuencoded figures, OKHEP-94-0
Calculating Casimir Energies in Renormalizable Quantum Field Theory
Quantum vacuum energy has been known to have observable consequences since
1948 when Casimir calculated the force of attraction between parallel uncharged
plates, a phenomenon confirmed experimentally with ever increasing precision.
Casimir himself suggested that a similar attractive self-stress existed for a
conducting spherical shell, but Boyer obtained a repulsive stress. Other
geometries and higher dimensions have been considered over the years. Local
effects, and divergences associated with surfaces and edges have been studied
by several authors. Quite recently, Graham et al. have re-examined such
calculations, using conventional techniques of perturbative quantum field
theory to remove divergences, and have suggested that previous self-stress
results may be suspect. Here we show that the examples considered in their work
are misleading; in particular, it is well-known that in two dimensions a
circular boundary has a divergence in the Casimir energy for massless fields,
while for general dimension not equal to an even integer the corresponding
Casimir energy arising from massless fields interior and exterior to a
hyperspherical shell is finite. It has also long been recognized that the
Casimir energy for massive fields is divergent for . These conclusions
are reinforced by a calculation of the relevant leading Feynman diagram in
and three dimensions. There is therefore no doubt of the validity of the
conventional finite Casimir calculations.Comment: 25 pages, REVTeX4, 1 ps figure. Revision includes new subsection 4B
and Appendix, and other minor correction
A study of indoor carbon dioxide levels and sick leave among office workers
BACKGROUND: A previous observational study detected a strong positive relationship between sick leave absences and carbon dioxide (CO(2)) concentrations in office buildings in the Boston area. The authors speculated that the observed association was due to a causal effect associated with low dilution ventilation, perhaps increased airborne transmission of respiratory infections. This study was undertaken to explore this association. METHODS: We conducted an intervention study of indoor CO(2) levels and sick leave among hourly office workers employed by a large corporation. Outdoor air supply rates were adjusted periodically to increase the range of CO(2) concentrations. We recorded indoor CO(2) concentrations every 10 minutes and calculated a CO(2) concentration differential as a measure of outdoor air supply per person by subtracting the 1–3 a.m. average CO(2) concentration from the same-day 9 a.m. – 5 a.m. average concentration. The metric of CO(2) differential was used as a surrogate for the concentration of exhaled breath and for potential exposure to human source airborne respiratory pathogens. RESULTS: The weekly mean, workday, CO(2) concentration differential ranged from 37 to 250 ppm with a peak CO(2) concentration above background of 312 ppm as compared with the American Society of Heating, Refrigeration and Air-conditioning Engineers (ASHRAE) recommended maximum differential of 700 ppm. We determined the frequency of sick leave among 294 hourly workers scheduled to work approximately 49,804.2 days in the study areas using company records. We found no association between sick leave and CO(2) differential CONCLUSIONS: The CO(2) differential was in the range of very low values, as compared with the ASHRAE recommended maximum differential of 700 ppm. Although no effect was found, this study was unable to test whether higher CO(2) differentials may be associated with increased sick leave
A Novel Unsupervised Method to Identify Genes Important in the Anti-viral Response: Application to Interferon/Ribavirin in Hepatitis C Patients
Background: Treating hepatitis C with interferon/ribavirin results in a varied response in terms of decrease in viral titer and ultimate outcome. Marked responders have a sharp decline in viral titer within a few days of treatment initiation, whereas in other patients there is no effect on the virus (poor responders). Previous studies have shown that combination therapy modifies expression of hundreds of genes in vitro and in vivo. However, identifying which, if any, of these genes have a role in viral clearance remains challenging. Aims: The goal of this paper is to link viral levels with gene expression and thereby identify genes that may be responsible for early decrease in viral titer. Methods: Microarrays were performed on RNA isolated from PBMC of patients undergoing interferon/ribavirin therapy. Samples were collected at pre-treatment (day 0), and 1, 2, 7, 14 and 28 days after initiating treatment. A novel method was applied to identify genes that are linked to a decrease in viral titer during interferon/ribavirin treatment. The method uses the relationship between inter-patient gene expression based proximities and inter-patient viral titer based proximities to define the association between microarray gene expression measurements of each gene and viral-titer measurements. Results: We detected 36 unique genes whose expressions provide a clustering of patients that resembles viral titer based clustering of patients. These genes include IRF7, MX1, OASL and OAS2, viperin and many ISG's of unknown function. Conclusion: The genes identified by this method appear to play a major role in the reduction of hepatitis C virus during the early phase of treatment. The method has broad utility and can be used to analyze response to any group of factors influencing biological outcome such as antiviral drugs or anti-cancer agents where microarray data are available. © 2007 Brodsky et al
Casimir Forces for Robin Scalar Field on Cylindrical Shell in de Sitter Space
The Casimir stress on a cylinderical shell in background of conformally flat
space-time for massless scalar field is investigated. In the general case of
Robin (mixed) boundary condition formulae are derived for the vacuum
expectation values of the energy-momentum tensor and vacuum forces acting on
boundaries. The special case of the dS bulk is considered then different
cosmological constants are assumed for the space inside and outside of the
shell to have general results applicable to the case of cylindrical domain wall
formations in the early universe.Comment: 10 pages, no figur
- …