174 research outputs found

    Erbium-based magnetic refrigerant (regenerator) for passive cryocooler

    Get PDF
    A two stage Gifford-McMahon cryocooler having a low temperature stage for reaching approximately 10K, wherein the low temperature stage includes a passive magnetic heat regenerator selected from the group consisting of Er.sub.6 Ni.sub.2 Sn, Er.sub.6 Ni.sub.2 Pb, Er.sub.6 Ni.sub.2 (Sn.sub.0.75 Ga.sub.0.25), and Er.sub.9 Ni.sub.3 Sn comprising a mixture of Er.sub.3 Ni and Er.sub.6 Ni.sub.2 Sn in the microstructure

    Field dependence of the magnetocaloric effect in Gd and (Er 1-xDyx)Al2: Does a universal curve exist?

    Get PDF
    The field dependence of the magnetic entropy change of ferromagnetic lanthanide- based materials has been studied. The recently proposed master curve for the field dependence of the magnetocaloric effect of Fe-based amorphous alloys can also be constructed for these lanthanide-based crystalline materials, suggesting a universal behavior. The exponent n controlling the field dependence of the magnetic entropy change can be used for the interpretation of results in the case of multiple magnetic ordering phenomena

    Combined local-density and dynamical mean field theory calculations for the compressed lanthanides Ce, Pr, and Nd

    Full text link
    This paper reports calculations for compressed Ce (4f^1), Pr (4f^2), and Nd (4f^3) using a combination of the local-density approximation (LDA) and dynamical mean field theory (DMFT), or LDA+DMFT. The 4f moment, spectra, and the total energy among other properties are examined as functions of volume and atomic number for an assumed face-centered cubic (fcc) structure.Comment: 15 pages, 9 figure

    Complex magnetism of lanthanide intermetallics unravelled

    Get PDF
    We explain a profound complexity of magnetic interactions of some technologically relevant gadolinium intermetallics using an ab-initio electronic structure theory which includes disordered local moments and strong ff-electron correlations. The theory correctly finds GdZn and GdCd to be simple ferromagnets and predicts a remarkably large increase of Curie temperature with pressure of +1.5 K kbar1^{-1} for GdCd confirmed by our experimental measurements of +1.6 K kbar1^{-1}. Moreover we find the origin of a ferromagnetic-antiferromagnetic competition in GdMg manifested by non-collinear, canted magnetic order at low temperatures. Replacing 35\% of the Mg atoms with Zn removes this transition in excellent agreement with longstanding experimental data.Comment: 11 pages, 4 figure

    Phase relationships and structural, magnetic, and thermodynamic properties of alloys in the pseudobinary Er5Si4-Er5Ge4 system

    Get PDF
    The room temperature crystal structures of Er5SixGe4−x alloys change systematically with the concentration of Ge from the orthorhombic Gd5Si4-type when x=4, to the monoclinic Gd5Si2Ge2 type when 3.5⩽x⩽3.9 and to the orthorhombic Sm5Ge4 type forx⩽3. The Curie-Weiss behavior of Er5SixGe4−x materials is consistent with the Er3+ state. The compounds order magnetically below 30 K, apparently adopting complex noncollinear magnetic structures with magnetization not reaching saturation in 50 kOe magnetic fields. In Er5Si4, the structural-only transformation from the monoclinic Gd5Si2Ge2-type to the orthorhombic Gd5Si4-type phase occurs around 218 K on heating. Intriguingly, the temperature of this polymorphic transformation is weakly dependent on magnetic fields as low as 40 kOe (dT∕dH=−0.058 K∕kOe) when the material is in the paramagnetic state nearly 200 K above its spontaneous magnetic ordering temperature. It appears that a magnetostructural transition may be induced in the 5:4 erbium silicide at ∼18 K and above by 75 kOe and higher magnetic fields. Only Er5Si4 but none of the other studied Er5SixGe4−x alloys exhibit magnetic field induced transformations, which are quite common in the closely related Gd5SixGe4−x system. The magnetocaloric effects of the Er5SixGe4−x alloys are moderate

    Magnetic phase transitions and ferromagnetic short-range correlations in single-crystal Tb5Si2.2Ge1.8

    Get PDF
    Magnetic phase transitions in a Tb5Si2.2Ge1.8 single crystal have been studied as a function of temperature and magnetic field. Magnetic-field dependencies of the critical temperatures are highly anisotropic for both the main magnetic ordering process occurring around 120 K and a spin reorientation transition at ∼70 K. Magnetic-field-induced phase transitions occur with the magnetic field applied isothermally along the a and b axes (but not along the c axis) between 1.8 and 70 K in fields below 70 kOe. Strong anisotropic thermal irreversibility is observed in the Griffiths phase regime between 120 and 200 K with applied fields ranging from 10 to 1000 Oe. Our data (1) show that the magnetic and structural phase transitions around 120 K are narrowly decoupled; (2) uncover the anisotropy of ferromagnetic short-range order in the Griffiths phase; and (3) reveal some unusual magnetic domain effects in the long-range ordered state of the Tb5Si2.2Ge1.8 compound. The temperature-magnetic field phase diagrams with field applied along the three major crystallographic directions have been constructed

    Elastic properties of Gd5Si2Ge2 studied with an ultrasonic pulse-echo technique

    Get PDF
    We present the results of a study of the elastic properties of Gd5Si2Ge2, an alloy with giant magnetocaloric, magnetostrictive, and colossal magnetoresistive properties. Sound wave velocities measured in a number of different geometries allowed us to determine the whole elastic tensor for the monoclinic phase of this material. The anisotropy of the crystal is explored using the polar plots of the variations in the main crystallographic planes of the sound speed, the Young’s modulus, the shear modulus, and the linear compressibility. The effect of hydrostatic pressure on the Gd5Si2Ge2 properties is clarified. The acoustical axes are determined. The bulk modulus is estimated as 68.5 GPa; the Debye temperature is 250 K

    Short-range anisotropic ferromagnetic correlations in the paramagnetic and antiferromagnetic phases of Gd5Ge4

    Get PDF
    Signatures of short range anisotropic ferromagnetic correlations and ferromagnetic clustering, manifested as unusually large hysteresis and other anomalies of the low magnetic field dc magnetization and ac magnetic susceptibility, have been observed in both the antiferromagnetic and paramagnetic states of single crystal Gd5Ge4. Ferromagnetic correlations, which are most pronounced in a weak magnetic field applied along the b axis, are readily suppressed by fields exceeding ∼5 kOe and are believed to be related to a Griffiths-like phase that develops in Gd5Ge4 below TG≅240 K
    corecore