11,029 research outputs found
Coupling of mixed layer processes and thermocline variations in the Arabian Sea
This study presents an analysis of observed data sets from multiple sources, including observations from a network of Argo floats during (2002–2003), with the aim of investigating the role of the southwest monsoon circulation in affecting the interactions between the oceanic mixed layer and the underlying thermocline in the northern Indian Ocean. Examination of the seasonal cycle of the upper-ocean thermal structure shows that the surface cooling of the Arabian Sea, during the southwest monsoon season, is accompanied by significant warming of the thermocline. It is seen that the thermocline is warmer by about 1.2°C in the south-central Arabian Sea during the southwest monsoon season relative to other months. Offline computations of the profiles of vertical diffusivity of heat reveal stronger and deeper penetration of heat into the Arabian Sea during the southwest monsoon season. The results presented in the paper demonstrate that the combined effects of strong wind-driven mixing by the monsoonal winds, weak density stratification in the upper-ocean, and downwelling in south-central Arabian Sea, along with strong vertical diffusivity, favor downward transfer of warm waters from the surface into the thermocline. Besides the climatological seasonal cycle, the present study also examines the impact of monsoon interannual variability on the upper-ocean response, by analysis of long-term observed records during (1955–2001) as well as the Argo observations for (2002–2003). It is found that the interannual variations in the ocean response reveal signatures of the influence of strong and weak southwest monsoons on the mixed layer and thermocline variabilities
Near-linear Time Algorithm for Approximate Minimum Degree Spanning Trees
Given a graph , we wish to compute a spanning tree whose maximum
vertex degree, i.e. tree degree, is as small as possible. Computing the exact
optimal solution is known to be NP-hard, since it generalizes the Hamiltonian
path problem. For the approximation version of this problem, a
time algorithm that computes a spanning tree of degree at most is
previously known [F\"urer \& Raghavachari 1994]; here denotes the
minimum tree degree of all the spanning trees. In this paper we give the first
near-linear time approximation algorithm for this problem. Specifically
speaking, we propose an time algorithm that
computes a spanning tree with tree degree for any constant .
Thus, when , we can achieve approximate solutions with
constant approximate ratio arbitrarily close to 1 in near-linear time.Comment: 17 page
Development of Active Idle Stop System for Automotive Vehicle During Uphill Driving
This manuscript discusses the Active Idle Stop (AIS) system for a passenger vehicle system which is used to improve the dynamic performance of the vehicle when traveling uphill. The AIS function is developed mainly to improve the drawback in the existing vehicle system when driving uphill. Vehicles face unwanted deceleration and rollback when they are started on an incline. In this study, a control strategy using a Proportional-IntegralDerivative controller is used to improve the deceleration and rollback conditions during an idle stop on an uphill road gradient. A nonlinear vehicle longitudinal model has been used as the testing platform for the AIS function. Meanwhile, an optimization tool known as the Genetic Algorithm is used to improve the controller parameters according to the desired response of the vehicle. Based on the simulation results, it is possible to improve the vehicle’s performance using the AIS system to improve the rollback effect where the deceleration effect on the vehicle is reduced significantly
Unusual ocean-atmosphere conditions in the tropical Indian Ocean during 1994
The southeastern tropical Indian Ocean (SETIO) was characterized by unusually cold sea surface temperature (SST) and strong northwestward alongshore surface winds during 1994. Using multi-source data sets including ocean model simulation, two key processes are identified for the SETIO cooling. Entrainment cooling produced most of the negative SST anomaly near the coast whereas evaporative cooling dominated the process away from the coast. Convection was anomalously suppressed over SETIO and the divergence of moist air from the region helped the local evaporative process. This also led to anomalous moisture transports that explain the enhanced convection over the central equatorial Indian Ocean, India and East Asia. The positive feedback between the enhanced and suppressed convection regions in turn helped maintain the surface wind anomalies. These evidences clearly indicate the existence of an ocean-atmosphere coupled phenomenon in the Indian Ocean during 1994
- …