372 research outputs found

    Symmetry characterization of eigenstates in opal-based photonic crystals

    Full text link
    The complete symmetry characterization of eigenstates in bare opal systems is obtained by means of group theory. This symmetry assignment has allowed us to identify several bands that cannot couple with an incident external plane wave. Our prediction is supported by layer-KKR calculations, which are also performed: the coupling coefficients between bulk modes and externally excited field tend to zero when symmetry properties mismatch.Comment: 7 pages, 5 figures, submitted to Physical Review

    Exotic radiation from a photonic crystal excited by an ultra-relativistic electron beam

    Get PDF
    We report the observation of an exotic radiation (unconventional Smith-Purcell radiation) from a one-dimensional photonic crystal. The physical origin of the exotic radiation is direct excitation of the photonic bands by an ultra-relativistic electron beam. The spectrum of the exotic radiation follows photonic bands of a certain parity, in striking contrast to the conventional Smith-Purcell radiation, which shows solely a linear dispersion. Key ingredients for the observation are the facts that the electron beam is in an ultra-relativistic region and that the photonic crystal is finite. The origin of the radiation was identified by comparison of experimental and theoretical results.Comment: 4 pages, 5 figure

    Strong Resonance of Light in a Cantor Set

    Full text link
    The propagation of an electromagnetic wave in a one-dimensional fractal object, the Cantor set, is studied. The transfer matrix of the wave amplitude is formulated and its renormalization transformation is analyzed. The focus is on resonant states in the Cantor set. In Cantor sets of higher generations, some of the resonant states closely approach the real axis of the wave number, leaving between them a wide region free of resonant states. As a result, wide regions of nearly total reflection appear with sharp peaks of the transmission coefficient beside them. It is also revealed that the electromagnetic wave is strongly enhanced and localized in the cavity of the Cantor set near the resonant frequency. The enhancement factor of the wave amplitude at the resonant frequency is approximately 6/∣ηr∣6/|\eta_\mathrm{r}|, where ηr\eta_\mathrm{r} is the imaginary part of the corresponding resonant eigenvalue. For example, a resonant state of the lifetime τr=4.3\tau_\mathrm{r}=4.3ms and of the enhancement factor M=7.8×107M=7.8\times10^7 is found at the resonant frequency ωr=367\omega_\mathrm{r}=367GHz for the Cantor set of the fourth generation of length L=10cm made of a medium of the dielectric constant Ï”=10\epsilon=10.Comment: 20 pages, 11 figures, to be published in Journal of the Physical Society of Japa

    Fermi Edge Singularities and Backscattering in a Weakly Interacting 1D Electron Gas

    Full text link
    The photon-absorption edge in a weakly interacting one-dimensional electron gas is studied, treating backscattering of conduction electrons from the core hole exactly. Close to threshold, there is a power-law singularity in the absorption, I(Ï”)∝ϔ−αI(\epsilon) \propto \epsilon^{-\alpha}, with α=3/8+ÎŽ+/π−Ύ+2/2π2\alpha = 3/8 + \delta_+/\pi - \delta_+^2/2\pi^2 where ÎŽ+\delta_+ is the forward scattering phase shift of the core hole. In contrast to previous theories, α\alpha is finite (and universal) in the limit of weak core hole potential. In the case of weak backscattering U(2kF)U(2k_F), the exponent in the power-law dependence of absorption on energy crosses over to a value α=ÎŽ+/π−Ύ+2/2π2\alpha = \delta_+/\pi - \delta_+^2/2\pi^2 above an energy scale ϔ∗∌[U(2kF)]1/Îł\epsilon^* \sim [U(2k_F)]^{1/\gamma}, where Îł\gamma is a dimensionless measure of the electron-electron interactions.Comment: 8 pages + 1 postscript figure, preprint TPI-MINN-93/40-

    Poles and zeros of the scattering matrix associated to defect modes

    Full text link
    We analyze electromagnetic waves propagation in one-dimensional periodic media with single or periodic defects. The study is made both from the point of view of the modes and of the diffraction problem. We provide an explicit dispersion equation for the numerical calculation of the modes, and we establish a connection between modes and poles and zeros of the scattering matrix.Comment: 6 pages (Revtex), no figure

    Photonic Band Gaps of Three-Dimensional Face-Centered Cubic Lattices

    Full text link
    We show that the photonic analogue of the Korringa-Kohn-Rostocker method is a viable alternative to the plane-wave method to analyze the spectrum of electromagnetic waves in a three-dimensional periodic dielectric lattice. Firstly, in the case of an fcc lattice of homogeneous dielectric spheres, we reproduce the main features of the spectrum obtained by the plane wave method, namely that for a sufficiently high dielectric contrast a full gap opens in the spectrum between the eights and ninth bands if the dielectric constant ϔs\epsilon_s of spheres is lower than the dielectric constant ϔb\epsilon_b of the background medium. If ϔs>ϔb\epsilon_s> \epsilon_b, no gap is found in the spectrum. The maximal value of the relative band-gap width approaches 14% in the close-packed case and decreases monotonically as the filling fraction decreases. The lowest dielectric contrast ϔb/ϔs\epsilon_b/\epsilon_s for which a full gap opens in the spectrum is determined to be 8.13. Eventually, in the case of an fcc lattice of coated spheres, we demonstrate that a suitable coating can enhance gap widths by as much as 50%.Comment: 19 pages, 6 figs., plain latex - a section on coated spheres, two figures, and a few references adde

    Path-decomposition expansion and edge effects in a confined magnetized free-electron gas

    Full text link
    Path-integral methods can be used to derive a `path-decomposition expansion' for the temperature Green function of a magnetized free-electron gas confined by a hard wall. With the help of this expansion the asymptotic behaviour of the profiles for the excess particle density and the electric current density far from the edge is determined for arbitrary values of the magnetic field strength. The asymptotics are found to depend sensitively on the degree of degeneracy. For a non-degenerate electron gas the asymptotic profiles are essentially Gaussian (albeit modulated by a Bessel function), on a length scale that is a function of the magnetic field strength and the temperature. For a completely degenerate electron gas the asymptotic behaviour is again proportional to a Gaussian, with a scale that is the magnetic length in this case. The prefactors are polynomial and logarithmic functions of the distance from the wall, that depend on the number of filled Landau levels nn. As a consequence, the Gaussian asymptotic decay sets in at distances that are large compared to the magnetic length multiplied by n\sqrt{n}.Comment: 16 pages, 2 figures, submitted to J. Phys. A: Math. Gen; corrected small typ
    • 

    corecore