47,524 research outputs found
Synthetic vision and emotion calculation in intelligent virtual human modeling
The virtual human technique already can provide vivid and believable human behaviour in more and more scenarios. Virtual humans are expected to replace real humans in hazardous situations to undertake tests and feed back valuable information. This paper will introduce a virtual human with a novel collision-based synthetic vision, short-term memory model and a capability to implement the emotion calculation and decision making. The virtual character based on this model can ‘see’ what is in his field of view (FOV) and remember those objects. After that, a group of affective computing equations have been introduced. These equations have been implemented into a proposed emotion calculation process to enlighten emotion for virtual intelligent huma
Recommended from our members
Emotion-affected decision making in human simulation
Human modelling is an interdisciplinary research field. The topic, emotion-affected decision making, was originally a cognitive psychology issue, but is now recognized as an important research direction for both computer science and biomedical modelling. The main aim of this paper is to attempt to bridge the gap between psychology and bioengineering in emotion-affected decision making. The work is based on Ortony's theory of emotions and bounded rationality theory, and attempts to connect the emotion process with decision making. A computational emotion model is proposed, and the initial framework of this model in virtual human simulation within the platform of VirtoolsTm is presented
Human motion modeling and simulation by anatomical approach
To instantly generate desired infinite realistic human motion is still a great challenge in virtual human simulation. In this paper, the novel emotion effected motion classification and anatomical motion classification are presented, as well as motion capture and parameterization methods. The framework for a novel anatomical approach to model human motion in a HTR (Hierarchical Translations and Rotations) file format is also described. This novel anatomical approach in human motion modelling has the potential to generate desired infinite human motion from a compact motion database. An architecture for the real-time generation of new motions is also propose
Recommended from our members
Modelling human behaviours and reactions under dangerous environment
This paper describes the framework of a real-time simulation system to model human behavior and reactions in dangerous environments. The system utilizes the latest 3D computer animation techniques, combined with artificial intelligence, robotics and psychology, to model human behavior, reactions and decision making under expected/unexpected dangers in real-time in virtual environments. The development of the system includes: classification on the conscious/subconscious behaviors and reactions of different people; capturing different motion postures by the Eagle Digital System; establishing 3D character animation models; establishing 3D models for the scene; planning the scenario and the contents; and programming within Virtools (TM) Dev. Programming within Virtools (TM) Dev is subdivided into modeling dangerous events, modeling character's perceptions, modeling character's decision making, modeling character's movements, modeling character's interaction with environment and setting up the virtual cameras. The real-time simulation of human reactions in hazardous environments is invaluable in military defense, fire escape, rescue operation planning, traffic safety studies, and safety planning in chemical factories, the design of buildings, airplanes, ships and trains. Currently, human motion modeling can be realized through established technology, whereas to integrate perception and intelligence into virtual human's motion is still a huge undertaking. The challenges here are the synchronization of motion and intelligence, the accurate modeling of human's vision, smell, touch and hearing, the diversity and effects of emotion and personality in decision making. There are three types of software platforms which could be employed to realize the motion and intelligence within one system, and their advantages and disadvantages are discussed
Spin Fluctuation Induced Dephasing in a Mesoscopic Ring
We investigate the persistent current in a hybrid Aharonov-Bohm ring -
quantum dot system coupled to a reservoir which provides spin fluctuations. It
is shown that the spin exchange interaction between the quantum dot and the
reservoir induces dephasing in the absence of direct charge transfer. We
demonstrate an anomalous nature of this spin-fluctuation induced dephasing
which tends to enhance the persistent current. We explain our result in terms
of the separation of the spin from the charge degree of freedom. The nature of
the spin fluctuation induced dephasing is analyzed in detail.Comment: 4 pages, 4 figure
Origins of the Isospin Violation of Dark Matter Interactions
Light dark matter (DM) with a large DM-nucleon spin-independent cross section
and furthermore proper isospin violation (ISV) may provide
a way to understand the confusing DM direct detection results. Combing with the
stringent astrophysical and collider constraints, we systematically investigate
the origin of ISV first via general operator analyses and further via
specifying three kinds of (single) mediators: A light from chiral
, an approximate spectator Higgs doublet (It can explain the
anomaly simultaneously) and color triplets. In addition, although from an
exotic mixing with generating , we can combine it with
the conventional Higgs to achieve proper ISV. As a concrete example, we propose
the model where the charged light sneutrino is the inelastic
DM, which dominantly annihilates to light dark states such as with sub-GeV
mass. This model can address the recent GoGeNT annual modulation consistent
with other DM direct detection results and free of exclusions.Comment: References added and English greatly improve
Gauge/String-Gravity Duality and Froissart Bound
The gauge/string-gravity duality correspondence opened renewed hope and
possibility to address some of the fundamental and non-perturbative QCD
problems in particle physics, such as hadron spectrum and Regge behavior of the
scattering amplitude at high energies. One of the most fundamental and
long-standing problem is the high energy behavior of total cross-sections.
According to a series of exhaustive tests by the COMPETE group, (1). total
cross-sections have a universal Heisenberg behavior in energy corresponding to
the maximal energy behavior allowed by the Froissart bound, i.e., with and for all reactions,
and (2). the factorization relation among is well satisfied by experiments. I discuss the
recent interesting application of the gauge/string-gravity duality of
correspondence with a deformed background metric so as to break the conformal
symmetry that can lead to the Heisenberg behavior of rising total
cross-sections, and present some preliminary results on the high energy QCD
from Planckian scattering in and black-hole production.Comment: 10 pages, Presented to the Coral Gables Conference 2003, Launching of
BelleE\'poque in High Energy Physics and Cosmology, 17 - 21 December 2003,
Fort Lauderdale, Florid
- …