3,545 research outputs found
Magnetic helicity transported by flux emergence and shuffling motions in Solar Active Region NOAA 10930
We present a new methodology which can determine magnetic helicity transport
by the passage of helical magnetic field lines from sub-photosphere and the
shuffling motions of foot-points of preexisting coronal field lines separately.
It is well known that only the velocity component which is perpendicular to the
magnetic field () has contribution to the helicity
accumulation. Here, we demonstrate that can be deduced
from horizontal motion and vector magnetograms, under a simple relation of
as suggested by
Dmoulin & Berger (2003). Then after dividing
into two components, as one is tangential and the other is normal to the solar
surface, we can determine both terms of helicity transport. Active region (AR)
NOAA 10930 is analyzed as an example during its solar disk center passage by
using data obtained by the Spectro-Polarimeter and the Narrowband Filter Imager
of Solar Optical Telescope on board Hinode. We find that in our calculation,
the helicity injection by flux emergence and shuffling motions have the same
sign. During the period we studied, the main contribution of helicity
accumulation comes from the flux emergence effect, while the dynamic transient
evolution comes from the shuffling motions effect. Our observational results
further indicate that for this AR, the apparent rotational motion in the
following sunspot is the real shuffling motions on solar surface
On the ill/well-posedness and nonlinear instability of the magneto-geostrophic equations
We consider an active scalar equation that is motivated by a model for
magneto-geostrophic dynamics and the geodynamo. We prove that the non-diffusive
equation is ill-posed in the sense of Hadamard in Sobolev spaces. In contrast,
the critically diffusive equation is well-posed. In this case we give an
example of a steady state that is nonlinearly unstable, and hence produces a
dynamo effect in the sense of an exponentially growing magnetic field.Comment: We have modified the definition of Lipschitz well-posedness, in order
to allow for a possible loss in regularity of the solution ma
On the optical properties of Ag^{+15} ion-beam irradiated TiO_{2} and SnO_{2} thin films
The effects of 200-MeV Ag^{+15} ion irradiation on the optical properties of
TiO_{2} and SnO_{2} thin films prepared by using the RF magnetron sputtering
technique were investigated. These films were characterized by using UV-vis
spectroscopy, and with increasing irradiation fluence, the transmittance for
the TiO_{2} films was observed to increase systematically while that for
SnO_{2} was observed to decrease. Absorption spectra of the irradiated samples
showed minor changes in the indirect bandgap from 3.44 to 3.59 eV with
increasing irradiation fluence for TiO_{2} while significant changes in the
direct bandgap from 3.92 to 3.6 eV were observed for SnO_{2}. The observed
modifications in the optical properties of both the TiO_{2} and the SnO_{2}
systems with irradiation can be attributed to controlled structural
disorder/defects in the system.Comment: 6 pages, ICAMD-201
Effects of a modified live CSFV vaccine on the development of PMWS in pigs infected experimentally with PCV-2
The objective of this study was to determine the effect of vaccination against classical swine fever virus (CSFV) on the development of postweaning multisystemic wasting syndrome (PMWS) in conventional pigs infected experimentally with porcine circovirus type 2 (PCV-2). The pigs infected with PCV-2 and immunised with modified live CSFV developed mild to moderate PMWS, whereas none of the pigs infected with PCV-2 alone or immunised with modified live CSFV alone developed PMWS. Lesions histologically characteristic of PMWS were observed in lymph nodes from the pigs infected with PCV-2 and immunised with modified live CSFV vaccine, and extensive replication of PCV-2 was detected in the nodes by in situ hybridisation.This research was supported by contract research funds from the
Research Institute for Veterinary Science of the College of Veterinary
Medicine, and by the Brain Korea 21 Programme for Veterinary Science
in the Republic of Korea
Strong lensing constraints on the velocity dispersion and density profile of elliptical galaxies
We use the statistics of strong gravitational lensing from the CLASS survey
to impose constraints on the velocity dispersion and density profile of
elliptical galaxies. This approach differs from much recent work, where the
luminosity function, velocity dispersion and density profile were typically
{\it assumed} in order to constrain cosmological parameters. It is indeed
remarkable that observational cosmology has reached the point where we can
consider using cosmology to constrain astrophysics, rather than vice versa. We
use two different observables to obtain our constraints (total optical depth
and angular distributions of lensing events). In spite of the relatively poor
statistics and the uncertain identification of lenses in the survey, we obtain
interesting constraints on the velocity dispersion and density profiles of
elliptical galaxies. For example, assuming the SIS density profile and
marginalizing over other relevant parameters, we find 168 km/s < sigma_* < 200
km/s (68% CL), and 158 km/s < sigma_* < 220 km/s (95% CL). Furthermore, if we
instead assume a generalized NFW density profile and marginalize over other
parameters, the slope of the profile is constrained to be 1.50 < beta < 2.00
(95% CL). We also constrain the concentration parameter as a function of the
density profile slope in these models. These results are essentially
independent of the exact knowledge of cosmology. We briefly discuss the
possible impact on these constraints of allowing the galaxy luminosity function
to evolve with redshift, and also possible useful future directions for
exploration.Comment: Uses the final JVAS/CLASS sample, more careful choice of ellipticals,
added discussion of possible biases. Final results essentially unchanged.
Matches the MNRAS versio
- …