54,240 research outputs found

    L2L_2 boosting in kernel regression

    Full text link
    In this paper, we investigate the theoretical and empirical properties of L2L_2 boosting with kernel regression estimates as weak learners. We show that each step of L2L_2 boosting reduces the bias of the estimate by two orders of magnitude, while it does not deteriorate the order of the variance. We illustrate the theoretical findings by some simulated examples. Also, we demonstrate that L2L_2 boosting is superior to the use of higher-order kernels, which is a well-known method of reducing the bias of the kernel estimate.Comment: Published in at http://dx.doi.org/10.3150/08-BEJ160 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Flexible generalized varying coefficient regression models

    Full text link
    This paper studies a very flexible model that can be used widely to analyze the relation between a response and multiple covariates. The model is nonparametric, yet renders easy interpretation for the effects of the covariates. The model accommodates both continuous and discrete random variables for the response and covariates. It is quite flexible to cover the generalized varying coefficient models and the generalized additive models as special cases. Under a weak condition we give a general theorem that the problem of estimating the multivariate mean function is equivalent to that of estimating its univariate component functions. We discuss implications of the theorem for sieve and penalized least squares estimators, and then investigate the outcomes in full details for a kernel-type estimator. The kernel estimator is given as a solution of a system of nonlinear integral equations. We provide an iterative algorithm to solve the system of equations and discuss the theoretical properties of the estimator and the algorithm. Finally, we give simulation results.Comment: Published in at http://dx.doi.org/10.1214/12-AOS1026 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Tie-respecting bootstrap methods for estimating distributions of sets and functions of eigenvalues

    Full text link
    Bootstrap methods are widely used for distribution estimation, although in some problems they are applicable only with difficulty. A case in point is that of estimating the distributions of eigenvalue estimators, or of functions of those estimators, when one or more of the true eigenvalues are tied. The mm-out-of-nn bootstrap can be used to deal with problems of this general type, but it is very sensitive to the choice of mm. In this paper we propose a new approach, where a tie diagnostic is used to determine the locations of ties, and parameter estimates are adjusted accordingly. Our tie diagnostic is governed by a probability level, β\beta, which in principle is an analogue of mm in the mm-out-of-nn bootstrap. However, the tie-respecting bootstrap (TRB) is remarkably robust against the choice of β\beta. This makes the TRB significantly more attractive than the mm-out-of-nn bootstrap, where the value of mm has substantial influence on the final result. The TRB can be used very generally; for example, to test hypotheses about, or construct confidence regions for, the proportion of variability explained by a set of principal components. It is suitable for both finite-dimensional data and functional data.Comment: Published in at http://dx.doi.org/10.3150/08-BEJ154 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Tunneling into fractional quantum Hall liquids

    Full text link
    Motivated by the recent experiment by Grayson et.al., we investigate a non-ohmic current-voltage characteristics for the tunneling into fractional quantum Hall liquids. We give a possible explanation for the experiment in terms of the chiral Tomonaga-Luttinger liquid theory. We study the interaction between the charge and neutral modes, and found that the leading order correction to the exponent α\alpha (I∼Vα)(I\sim V^\alpha) is of the order of ϵ\sqrt{\epsilon} (ϵ=vn/vc)(\epsilon=v_n/v_c), which reduces the exponent α\alpha. We suggest that it could explain the systematic discrepancy between the observed exponents and the exact α=1/ν\alpha =1/\nu dependence.Comment: Latex, 5 page

    Scaling regimes and critical dimensions in the Kardar-Parisi-Zhang problem

    Full text link
    We study the scaling regimes for the Kardar-Parisi-Zhang equation with noise correlator R(q) ~ (1 + w q^{-2 \rho}) in Fourier space, as a function of \rho and the spatial dimension d. By means of a stochastic Cole-Hopf transformation, the critical and correction-to-scaling exponents at the roughening transition are determined to all orders in a (d - d_c) expansion. We also argue that there is a intriguing possibility that the rough phases above and below the lower critical dimension d_c = 2 (1 + \rho) are genuinely different which could lead to a re-interpretation of results in the literature.Comment: Latex, 7 pages, eps files for two figures as well as Europhys. Lett. style files included; slightly expanded reincarnatio

    Resonance structures in the multichannel quantum defect theory for the photofragmentation processes involving one closed and many open channels

    Get PDF
    The transformation introduced by Giusti-Suzor and Fano and extended by Lecomte and Ueda for the study of resonance structures in the multichannel quantum defect theory (MQDT) is used to reformulate MQDT into the forms having one-to-one correspondence with those in Fano's configuration mixing (CM) theory of resonance for the photofragmentation processes involving one closed and many open channels. The reformulation thus allows MQDT to have the full power of the CM theory, still keeping its own strengths such as the fundamental description of resonance phenomena without an assumption of the presence of a discrete state as in CM.Comment: 7 page
    • …
    corecore