11,310 research outputs found

    Clustering of vacancy defects in high-purity semi-insulating SiC

    Get PDF
    Positron lifetime spectroscopy was used to study native vacancy defects in semi-insulating silicon carbide. The material is shown to contain (i) vacancy clusters consisting of 4--5 missing atoms and (ii) Si vacancy related negatively charged defects. The total open volume bound to the clusters anticorrelates with the electrical resistivity both in as-grown and annealed material. Our results suggest that Si vacancy related complexes compensate electrically the as-grown material, but migrate to increase the size of the clusters during annealing, leading to loss of resistivity.Comment: 8 pages, 5 figure

    Color Superconductivity from Supersymmetry

    Full text link
    A supersymmetric composite model of color superconductivity is proposed. Quarks and diquarks are dynamically generated as composite fields by a newly introduced strong gauge dynamics. It is shown that the condensation of the scalar component of the diquark supermultiplet occurs when the chemical potential becomes larger than some critical value. We believe that the model well captures aspects of the diquark condensate behavior and helps our understanding of the diquark dynamics in real QCD. The results obtained here might be useful when we consider a theory composed of quarks and diquarks.Comment: 4 pages, 2 figures, An error in Eq.(10) correcte

    (Non)-Renormalization of the Chiral Vortical Effect Coefficient

    Get PDF
    We show using diagramtic arguments that in some (but not all) cases, the temperature dependent part of the chiral vortical effect coefficient is independent of the coupling constant. An interpretation of this result in terms of quantization in the effective 3 dimensional Chern-Simons theory is also given. In the language of 3D dimensionally reduced theory, the value of the chiral vortical coefficient is related to the formula n=1n=1/12\sum_{n=1}^\infty n=-1/12. We also show that in the presence of dynamical gauge fields, the CVE coefficient is not protected from renormalization, even in the large NN limit.Comment: 11 pages, 3 figures. Version 2 corrects an error and calculates leading radiative correctio

    Characterization of the nitrogen split interstitial defect in wurtzite aluminum nitride using density functional theory

    Full text link
    We carried out Heyd-Scuseria-Ernzerhof hybrid density functional theory plane wave supercell calculations in wurtzite aluminum nitride in order to characterize the geometry, formation energies, transition levels and hyperfine tensors of the nitrogen split interstitial defect. The calculated hyperfine tensors may provide useful fingerprint of this defect for electron paramagnetic resonance measurement.Comment: 5 pages, 3 figure

    Superluminal pions in a hadronic fluid

    Full text link
    We study the propagation of pions at finite temperature and finite chemical potential in the framework of the linear sigma model with 2 quark flavors and NcN_c colors. The velocity of massless pions in general differs from that of light. One-loop calculations show that in the chiral symmetry broken phase pions, under certain conditions, propagate faster than light.Comment: 8 pages, 3 figures included. Considerably revised, discussions expanded, one figure added, typos corrected, results unchanged. To be published in Phys. Rev.

    Standard Isotherm Fit Information for Dry CO2 on Sorbents for 4-Bed Molecular Sieve

    Get PDF
    Onboard the ISS, one of the systems tasked with removal of metabolic carbon dioxide (CO2) is a 4-bed molecular sieve (4BMS) system. In order to enable a 4-person mission to succeed, systems for removal of metabolic CO2 must reliably operate for several years while minimizing power, mass, and volume requirements. This minimization can be achieved through system redesign and/or changes to the separation material(s). A material screening process has identified the most reliable sorbent materials for the next 4BMS. Sorbent characterization will provide the information necessary to guide system design by providing inputs for computer simulations

    Diffusion constant of supercharge density in N=4 SYM at finite chemical potential

    Get PDF
    We compute holographically the diffusion constant of supercharges in N=4 SYM at finite chemical potential for the R-charge, by solving the equations of motion for the transverse mode of the gravitino in the STU black hole in 5 dimensions. We consider the case of one charge and three charges, and we present analytical solutions for small values of the charges and numerical solutions for arbitrary values. We compare our results with other known results in 4 dimensions.Comment: 20 pages, 4 figures; v2: typos correcte

    Design of Multifunctional Lattice‐Frame Materials for Compact Heat Exchangers

    Get PDF
    Structured porous materials show great potential as extended surfaces in heat-exchange applications that also require design for load-bearing capability. In particular, lattice-frame materials (LFM) are known for their superior strength-to-weight ratio; this work presents a comprehensive experimental and numerical study of fluid flow and heat transfer in porous LFMs. Flow through a periodic unit cell of the material is simulated to characterize the forced-convection performance under hydraulically and thermally fully developed conditions. The performance of LFMs with a tetrahedral ligament configuration is characterized as a function of Reynolds number in the laminar regime (150 \u3c Re \u3c 1000) in terms of Nusselt number and friction factor; the effect of porosity is studied by changing the ligament diameter. Experiments are performed for a subset of porosities to validate the numerical approach. A method is demonstrated for utilizing the simulation results, which assume perfect surface efficiency, to predict the performance of LFMs with non-ideal surface efficiency, based on the conduction resistance of the ligaments. It is shown that the thermal behavior of the ligaments closely matches that of cylindrical fins in cross flow and that this analogy can be used to calculate the overall surface efficiency. The implications of the current results on the design of compact heat exchangers using LFMs is assessed using several conventional performance metrics. Our analysis illustrates the challenges in defining any one universal performance metric for compact heat exchanger design; an appropriate performance metric must be selected that accounts for the particular multifunctional performance characteristics of interest. LFMs are shown to provide the benefits of high-porosity and high surface area-to-volume ratio of materials such as metal foams, while also incurring lower pressure drops and displaying higher structural integrity. This makes them ideal for heat exchangers in aerospace and other applications demanding such multifunctional capabilities. The characterization provided in this study readily allows LFM designs for heat exchanger applications with combined heat-transfer and pressure-drop constraints

    Calibration and Uncertainty Analysis of a Fixed-Bed Adsorption Model for CO2 Separation

    Get PDF
    Fixed-bed adsorption is widely used in industrial gas separation and is the primary method for atmosphere revitalization in space. This paper analyzes the uncertainty of a one-dimensional, fixed-bed adsorption model due to uncertainty in several model inputs, namely, the linear-driving-force (LDF) mass transfer coefficient, axial dispersion, heat transfer coefficients, and adsorbent properties. The input parameter uncertainties are determined from a comprehensive survey of experimental data in the literature. The model is first calibrated against experimental data from intra-bed centerline concentration measurements to find the LDF coefficient. We then use this LDF coefficient to extract axial dispersion coefficients from mixed, downstream concentration measurements for both a small-diameter bed (dominated by wall-channeling) and a large-diameter bed (dominated by pellet-driven dispersion). The predicted effluent concentration and temperature profiles are most strongly affected by uncertainty in LDF coefficient, adsorbent density, and void fraction. The uncertainty analysis further reveals that ignoring the effect of wall-channeling on apparent axial dispersion can cause significant error in the predicted breakthrough times of small-diameter beds

    Shear sum rules at finite chemical potential

    Full text link
    We derive sum rules which constrain the spectral density corresponding to the retarded propagator of the T_{xy} component of the stress tensor for three gravitational duals. The shear sum rule is obtained for the gravitational dual of the N=4 Yang-Mills, theory of the M2-branes and M5-branes all at finite chemical potential. We show that at finite chemical potential there are additional terms in the sum rule which involve the chemical potential. These modifications are shown to be due to the presence of scalars in the operator product expansion of the stress tensor which have non-trivial vacuum expectation values at finite chemical potential.Comment: The proof for the absence of branch cuts is corrected.Results unchange
    corecore