93,194 research outputs found

    New high fill-factor triangular micro-lens array fabrication method using UV proximity printing

    Get PDF
    A simple and effective method to fabricate a high fill-factor triangular microlens array using the proximity printing in lithography process is reported. The technology utilizes the UV proximity printing by controlling a printing gap between the mask and substrate. The designed approximate triangle microlens array pattern can be fabricated the high fill-factor triangular microlens array in photoresist. It is due to the UV light diffraction to deflect away from the aperture edges and produce a certain exposure in photoresist material outside the aperture edges. This method can precisely control the geometric profile of high fill factor triangular microlens array. The experimental results showed that the triangular micro-lens array in photoresist could be formed automatically when the printing gap ranged from 240 micrometers to 840 micrometers. The gapless triangular microlens array will be used to increases of luminance for backlight module of liquid crystal displays.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838

    Probing annihilations and decays of low-mass galactic dark matter in IceCube DeepCore array: Track events

    Full text link
    The deployment of DeepCore array significantly lowers IceCube's energy threshold to about 10 GeV and enhances the sensitivity of detecting neutrinos from annihilations and decays of light dark matter. To match this experimental development, we calculate the track event rate in DeepCore array due to neutrino flux produced by annihilations and decays of galactic dark matter. We also calculate the background event rate due to atmospheric neutrino flux for evaluating the sensitivity of DeepCore array to galactic dark matter signatures. Unlike previous approaches, which set the energy threshold for track events at around 50 GeV (this choice avoids the necessity of including oscillation effect in the estimation of atmospheric background event rate), we have set the energy threshold at 10 GeV to take the full advantage of DeepCore array. We compare our calculated sensitivity with those obtained by setting the threshold energy at 50 GeV. We conclude that our proposed threshold energy significantly improves the sensitivity of DeepCore array to the dark matter signature for mχ<100m_{\chi}< 100 GeV in the annihilation scenario and mχ<300m_{\chi}<300 GeV in the decay scenario.Comment: 19 pages, 5 figures; match the published versio

    Modeling incompressible thermal flows using a central-moment-based lattice Boltzmann method

    Get PDF
    In this paper, a central-moment-based lattice Boltzmann (CLB) method for incompressible thermal flows is proposed. In the method, the incompressible Navier-Stokes equations and the convection-diffusion equation for the temperature field are sloved separately by two different CLB equations. Through the Chapman-Enskog analysis, the macroscopic governing equations for incompressible thermal flows can be reproduced. For the flow field, the tedious implementation for CLB method is simplified by using the shift matrix with a simplified central-moment set, and the consistent forcing scheme is adopted to incorporate forcing effects. Compared with several D2Q5 multiple-relaxation-time (MRT) lattice Boltzmann methods for the temperature equation, the proposed method is shown to be better Galilean invariant through measuring the thermal diffusivities on a moving reference frame. Thus a higher Mach number can be used for convection flows, which decreases the computational load significantly. Numerical simulations for several typical problems confirm the accuracy, efficiency, and stability of the present method. The grid convergence tests indicate that the proposed CLB method for incompressible thermal flows is of second-order accuracy in space
    • …
    corecore