41,998 research outputs found

    Electroweak Theory Without Higgs Bosons

    Full text link
    A perturbative SU(2)_L X U(1)_Y electroweak theory containing W, Z, photon, ghost, lepton and quark fields, but no Higgs or other fields, gives masses to W, Z and the non-neutrino fermions by means of an unconventional choice for the unperturbed Lagrangian and a novel method of renormalisation. The renormalisation extends to all orders. The masses emerge on renormalisation to one loop. To one loop the neutrinos are massless, the A -> Z transition drops out of the theory, the d quark is unstable and S-matrix elements are independent of the gauge parameter xi.Comment: 27 pages, LaTex, no figures; revised for publication; accepted by Int. J. Mod. Phys. A; includes biographical note on A. F. Nicholso

    Anomalous high energy dispersion in photoemission spectra from insulating cuprates

    Full text link
    Angle resolved photoelectron spectroscopic measurements have been performed on an insulating cuprate Ca_2CuO_2Cl_2. High resolution data taken along the \Gamma to (pi,pi) cut show an additional dispersive feature that merges with the known dispersion of the lowest binding energy feature, which follows the usual strongly renormalized dispersion of ~0.35 eV. This higher energy part reveals a dispersion that is very close to the unrenormalized band predicted by band theory. A transfer of spectral weight from the low energy feature to the high energy feature is observed as the \Gamma point is approached. By comparing with theoretical calculations the high energy feature observed here demonstrates that the incoherent portion of the spectral function has significant structure in momentum space due to the presence of various energy scales.Comment: 5 pages, 3 figure

    Placement solutions for multiple versions of a multimedia object

    Get PDF
    Transcoding is an important technology which adapts the same multimedia object to diverse mobile appliances; thus, users' requests for a specified version of a multimedia object could be served by a more detailed version cached according to transcoding. Therefore, it is of particularly theoretical and practical necessity to determine the proper versions to be cached at a node such that the specified objective is achieved. In this paper, we address the problem of multimedia object placement. The performance objective is to minimize the total access cost by considering both transmission cost and transcoding cost. We present an optimal dynamic programming-based solution for this problem. The performance of the proposed solutions is evaluated with a set of carefully designed simulation experiments for various performance metrics over a wide range of system parameters. The simulation results show that our solution consistently and significantly outperforms comparison solutions in terms of all the performance metrics considered.Keqiu Li, Hong Shen, Francis Y. L. Chi

    Anti-correlation and subsector structure in financial systems

    Full text link
    With the random matrix theory, we study the spatial structure of the Chinese stock market, American stock market and global market indices. After taking into account the signs of the components in the eigenvectors of the cross-correlation matrix, we detect the subsector structure of the financial systems. The positive and negative subsectors are anti-correlated each other in the corresponding eigenmode. The subsector structure is strong in the Chinese stock market, while somewhat weaker in the American stock market and global market indices. Characteristics of the subsector structures in different markets are revealed.Comment: 6 pages, 2 figures, 4 table

    Superconducting Gap Anisotropy in Nd1.85_{1.85}Ce0.15_{0.15}CuO4_4: Results from Photoemission

    Full text link
    We have performed angle resolved photoelectron spectroscopy on the electron doped cuprate superconductor Nd1.85_{1.85}Ce0.15_{0.15}CuO4_4. A comparison of the leading edge midpoints between the superconducting and normal states reveals a small, but finite shift of 1.5-2 meV near the (Ï€\pi,0) position, but no observable shift along the zone diagonal near (Ï€\pi/2,Ï€\pi/2). This is interpreted as evidence for an anisotropic superconducting gap in the electron doped materials, which is consistent with the presence of d-wave superconducting order in this cuprate superconductor.Comment: 5 pages, 4 figures, RevTex, to be published in Phys. Rev. Let

    Possible Dibaryons with Strangeness s=-5

    Get PDF
    In the framework of RGMRGM, the binding energy of the six quark system with strangeness s=-5 is systematically investigated under the SU(3) chiral constituent quark model. The single Ξ∗Ω\Xi^*\Omega channel calculation with spins S=0 and 3 and the coupled ΞΩ\Xi\Omega and Ξ∗Ω\Xi^*\Omega channel calculation with spins S=1 and 2 are considered, respectively. The results show following observations: In the spin=0 case, Ξ∗Ω\Xi^* \Omega is a bound dibaryon with the binding energy being 80.0∼92.4MeV80.0 \sim 92.4 MeV. In the S=1 case, ΞΩ\Xi\Omega is also a bound dibaryon. Its binding energy is ranged from 26.2MeV26.2 MeV to 32.9MeV32.9 MeV. In the S=2 and S=3 cases, no evidence of bound dibaryons are found. The phase shifts and scattering lengths in the S=0 and S=1 cases are also given.Comment: 10 pages, late

    Ultracold heteronuclear molecules and ferroelectric superfluids

    Full text link
    We analyze the possibility of a ferroelectric transition in heteronuclear molecules consisting of Bose-Bose, Bose-Fermi or Fermi-Fermi atom pairs. This transition is characterized by the appearance of a spontaneous electric polarization below a critical temperature. We discuss the existence of a ferroelectric Fermi liquid phase for Fermi molecules and the existence of a ferroelectric superfluid phase for Bose molecules characterized by the coexistence of ferroelectric and superfluid orders. Lastly, we propose an experiment to detect ferroelectric correlations through the observation of coherent dipole radiation pulses during time of flight.Comment: 4 pages and 3 figure

    Impact of surface roughness on diffusion of confined fluids

    Full text link
    Using event-driven molecular dynamics simulations, we quantify how the self diffusivity of confined hard-sphere fluids depends on the nature of the confining boundaries. We explore systems with featureless confining boundaries that treat particle-boundary collisions in different ways and also various types of physically (i.e., geometrically) rough boundaries. We show that, for moderately dense fluids, the ratio of the self diffusivity of a rough wall system to that of an appropriate smooth-wall reference system is a linear function of the reciprocal wall separation, with the slope depending on the nature of the roughness. We also discuss some simple practical ways to use this information to predict confined hard-sphere fluid behavior in different rough-wall systems
    • …
    corecore