15,635 research outputs found
d_{xy}-Density wave in fermion-fermion cold atom mixtures
We study density wave instabilities in a doubly-degenerate Fermi-Fermi
mixture with symmetry on a square lattice. For sufficiently
large on-site inter-species repulsion, when the two species of fermions are
both at half-filling, two conventional (-wave) number density waves are
formed with a -phase difference between them to minimize the inter-species
repulsion. Upon moving one species away from half-filling, an unconventional
density wave with -wave symmetry emerges. When both species are away
from the vicinity of half-filling, superconducting instabilities dominate. We
present results of a functional renormalization-group calculation that maps out
the phase diagram at weak couplings. Also, we provide a simple explanation for
the emergence of the -density wave phase based on a four-patch model.
We find a robust and general mechanism for -density-wave formation that
is related to the shape and size of the Fermi surfaces. The density imbalance
between the two species of fermions in the vicinity of half-filling leads to
phase-space discrepancy for different inter-species Umklapp couplings. Using a
phase space argument for leading corrections in the one-loop renormalization
group approach to fermions, we show that the phase-space discrepancy in our
system causes opposite flows for the two leading intra-species Umklapp
couplings and that this triggers the -density-wave instability.Comment: revised long version; 8 pages, 7 figure
Estimating changes in temperature extremes from millennial scale climate simulations using generalized extreme value (GEV) distributions
Changes in extreme weather may produce some of the largest societal impacts
of anthropogenic climate change. However, it is intrinsically difficult to
estimate changes in extreme events from the short observational record. In this
work we use millennial runs from the CCSM3 in equilibrated pre-industrial and
possible future conditions to examine both how extremes change in this model
and how well these changes can be estimated as a function of run length. We
estimate changes to distributions of future temperature extremes (annual minima
and annual maxima) in the contiguous United States by fitting generalized
extreme value (GEV) distributions. Using 1000-year pre-industrial and future
time series, we show that the magnitude of warm extremes largely shifts in
accordance with mean shifts in summertime temperatures. In contrast, cold
extremes warm more than mean shifts in wintertime temperatures, but changes in
GEV location parameters are largely explainable by mean shifts combined with
reduced wintertime temperature variability. In addition, changes in the spread
and shape of the GEV distributions of cold extremes at inland locations can
lead to discernible changes in tail behavior. We then examine uncertainties
that result from using shorter model runs. In principle, the GEV distribution
provides theoretical justification to predict infrequent events using time
series shorter than the recurrence frequency of those events. To investigate
how well this approach works in practice, we estimate 20-, 50-, and 100-year
extreme events using segments of varying lengths. We find that even using GEV
distributions, time series that are of comparable or shorter length than the
return period of interest can lead to very poor estimates. These results
suggest caution when attempting to use short observational time series or model
runs to infer infrequent extremes.Comment: 33 pages, 22 figures, 1 tabl
Management of an Accessory Bile Duct Leak Following Pancreaticoduodenectomy: A Novel Approach Utilizing a Percutaneous and Endoscopic Rendezvous.
Biliary leaks are uncommon but morbid complications of pancreaticoduodenectomies, which have historically been managed with percutaneous drainage, reoperation, or a combination of both. We report a de novo percutaneous-endoscopic hepaticojejunostomy from an anomalous right hepatic duct injured during pancreaticoduodenectomy to the afferent bowel limb. The percutaneous-endoscopic hepaticojejunostomy was stented to allow for tract formation with successful stent removal after 5.5 months. One year after the creation of the percutaneous-endoscopic hepaticojejunostomy, the patient remains clinically well without evidence of biliary leak or obstruction
Statistical mechanics of an ideal Bose gas in a confined geometry
We study the behaviour of an ideal non-relativistic Bose gas in a
three-dimensional space where one of the dimensions is compactified to form a
circle. In this case there is no phase transition like that for the case of an
infinite volume, nevertheless Bose-Einstein condensation signified by a sudden
buildup of particles in the ground state can occur. We use the grand canonical
ensemble to study this problem. In particular, the specific heat is evaluated
numerically, as well as analytically in certain limits. We show analytically
how the familiar result for the specific heat is recovered as we let the size
of the circle become large so that the infinite volume limit is approached. We
also examine in detail the behaviour of the chemical potential and establish
the precise manner in which it approaches zero as the volume becomes large.Comment: 13 pages, 2 eps figures, revtex
Myeloid suppressor cell depletion augments antitumor activity in lung cancer.
BackgroundMyeloid derived suppressor cells (MDSC) are important regulators of immune responses. We evaluated the mechanistic role of MDSC depletion on antigen presenting cell (APC), NK, T cell activities and therapeutic vaccination responses in murine models of lung cancer.Principal findingsIndividual antibody mediated depletion of MDSC (anti-Gr1 or anti-Ly6G) enhanced the antitumor activity against lung cancer. In comparison to controls, MDSC depletion enhanced the APC activity and increased the frequency and activity of the NK and T cell effectors in the tumor. Compared to controls, the anti-Gr1 or anti-Ly6G treatment led to increased: (i) CD8 T cells, (ii) NK cells, (iii) CD8 T or NK intracytoplasmic expression of IFNγ, perforin and granzyme (iv) CD3 T cells expressing the activation marker CD107a and CXCR3, (v) reduced CD8 T cell IL-10 production in the tumors (vi) reduced tumor angiogenic (VEGF, CXCL2, CXCL5, and Angiopoietin1&2) but enhanced anti-angiogenic (CXCL9 and CXCL10) expression and (vii) reduced tumor staining of endothelial marker Meca 32. Immunocytochemistry of tumor sections showed reduced Gr1 expressing cells with increased CD3 T cell infiltrates in the anti-Gr1 or anti-Ly6G groups. MDSC depletion led to a marked inhibition in tumor growth, enhanced tumor cell apoptosis and reduced migration of the tumors from the primary site to the lung compared to controls. Therapeutic vaccination responses were enhanced in vivo following MDSC depletion with 50% of treated mice completely eradicating established tumors. Treated mice that rejected their primary tumors acquired immunological memory against a secondary tumor challenge. The remaining 50% of mice in this group had 20 fold reductions in tumor burden compared to controls.SignificanceOur data demonstrate that targeting MDSC can improve antitumor immune responses suggesting a broad applicability of combined immune based approaches against cancer. This multifaceted approach may prove useful against tumors where MDSC play a role in tumor immune evasion
- …