19,807 research outputs found
Studying Diquark Structure of Heavy Baryons in Relativistic Heavy Ion Collisions
We propose the enhancement of yield in heavy ion collisions at
RHIC and LHC as a novel signal for the existence of diquarks in the strongly
coupled quark-gluon plasma produced in these collisions as well as in the
. Assuming that stable bound diquarks can exist in the quark-gluon
plasma, we argue that the yield of would be increased by two-body
collisions between diquarks and quarks, in addition to normal
three-body collisions among , and quarks. A quantitative study of
this effect based on the coalescence model shows that including the
contribution of diquarks to production indeed leads to a
substantial enhancement of the ratio in heavy ion collisions.Comment: Prepared for Chiral Symmetry in Hadron and Nuclear Physics
(Chiral07), Nov. 13-16, 2007, Osaka, Japa
Young\u27s modulus of [111] germanium nanowires
This paper reports a diameter-independent Young’s modulus of 91.9 ± 8.2 GPa for [111] Germaniumnanowires (Ge NWs). When the surface oxide layer is accounted for using a core-shell NW approximation, the YM of the Ge core approaches a near theoretical value of 147.6 ± 23.4 GPa. The ultimate strength of a NW device was measured at 10.9 GPa, which represents a very high experimental-to-theoretical strength ratio of ∼75%. With increasing interest in this material system as a high-capacity lithium-ion battery anode, the presented data provide inputs that are essential in predicting its lithiation-induced stress fields and fracture behavior
Optical Response of Solid CO as a Tool for the Determination of the High Pressure Phase
We report first-principles calculations of the frequency dependent linear and
second-order optical properties of the two probable extended-solid phases of
CO--V, i.e. and . Compared to the parent
phase the linear optical susceptibility of both phases is much smaller. We find
that and differ substantially in their linear optical
response in the higher energy regime. The nonlinear optical responses of the
two possible crystal structures differ by roughly a factor of five. Since the
differences in the nonlinear optical spectra are pronounced in the low energy
regime, i.e. below the band gap of diamond, measurements with the sample inside
the diamond anvil cell are feasible. We therefore suggest optical experiments
in comparison with our calculated data as a tool for the unambiguous
identification of the high pressure phase of CO.Comment: 4 pages 2 fig
Control of carbon nanotube morphology by change of applied bias field during growth
Carbon nanotube morphology has been engineered via simple control of applied voltage during dc plasma chemical vapor deposition growth. Below a critical applied voltage, a nanotube configuration of vertically aligned tubes with a constant diameter is obtained. Above the critical voltage, a nanocone-type configuration is obtained. The strongly field-dependent transition in morphology is attributed primarily to the plasma etching and decrease in the size of nanotube-nucleating catalyst particles. A two-step control of applied voltage allows a creation of dual-structured nanotube morphology consisting of a broad base nanocone (~200 nm dia.) with a small diameter nanotube (~7 nm) vertically emanating from the apex of the nanocone, which may be useful for atomic force microscopy
Unsupervised Holistic Image Generation from Key Local Patches
We introduce a new problem of generating an image based on a small number of
key local patches without any geometric prior. In this work, key local patches
are defined as informative regions of the target object or scene. This is a
challenging problem since it requires generating realistic images and
predicting locations of parts at the same time. We construct adversarial
networks to tackle this problem. A generator network generates a fake image as
well as a mask based on the encoder-decoder framework. On the other hand, a
discriminator network aims to detect fake images. The network is trained with
three losses to consider spatial, appearance, and adversarial information. The
spatial loss determines whether the locations of predicted parts are correct.
Input patches are restored in the output image without much modification due to
the appearance loss. The adversarial loss ensures output images are realistic.
The proposed network is trained without supervisory signals since no labels of
key parts are required. Experimental results on six datasets demonstrate that
the proposed algorithm performs favorably on challenging objects and scenes.Comment: 16 page
Electroweak phase transition in a nonminimal supersymmetric model
The Higgs potential of the minimal nonminimal supersymmetric standard model
(MNMSSM) is investigated within the context of electroweak phase transition. We
investigate the allowed parameter space yielding correct electroweak phase
transitoin employing a high temperature approximation. We devote to
phenomenological consequences for the Higgs sector of the MNMSSM for
electron-positron colliders. It is observed that a future linear
collider with GeV will be able to test the model with regard
to electroweak baryogenesis.Comment: 28 pages, 5 tables, 12 figure
- …