40,073 research outputs found

    Extraction of nuclear matter properties from nuclear masses by a model of equation of state

    Get PDF
    The extraction of nuclear matter properties from measured nuclear masses is investigated in the energy density functional formalism of nuclei. It is shown that the volume energy a1a_1 and the nuclear incompressibility K0K_0 depend essentially on μnN+μˉpZ2EN\mu_n N+\bar{\mu}_p Z-2E_N, whereas the symmetry energy JJ and the density symmetry coefficient LL as well as symmetry incompressibility KsK_s depend essentially on μnμˉp\mu_n-\bar{\mu}_p, where μˉp=μpEC/Z\bar{\mu}_p=\mu_p-\partial E_C/\partial Z, μn\mu_n and μp\mu_p are the neutron and proton chemical potentials respectively, ENE_N the nuclear energy, and ECE_C the Coulomb energy. The obtained symmetry energy is J=28.5MeVJ=28.5MeV, while other coefficients are uncertain within ranges depending on the model of nuclear equation of state.Comment: 12 pages and 7 figure

    Bis[μ-bis(diphenylphosphino)methane-К²P:P’]bis[(saccharinato-КN)- palladium(I)] dichloromethane solvate

    Get PDF
    The dimeric palladium(I) saccharinate complex [Pd₂(sac)₂(dppm)₂], has been characterized as its di¬chloro¬methane solvate, i.e. [Pd₂(C₇H₄NO₃S)₂(C₂₅H₂₂P₂)₂]•CH₂Cl₂. The complex features a Pd—Pd bond bridged by two dppm ligands, with the saccharinate ligands N-bonded trans to the Pd—Pd bond

    Effective nucleon-nucleon interactions and nuclear matter equation of state

    Get PDF
    Nuclear matter equations of state based on Skyrme, Myers-Swiatecki and Tondeur interactions are written as polynomials of the cubic root of density, with coefficients that are functions of the relative neutron excess δ\delta. In the extrapolation toward states far away from the standard one, it is shown that the asymmetry dependence of the critical point (ρc,δc\rho_c, \delta_c) depends on the model used. However, when the equations of state are fitted to the same standard state, the value of δc\delta_c is almost the same in Skyrme and in Myers-Swiatecki interactions, while is much lower in Tondeur interaction. Furthermore, δc\delta_c does not depend sensitively on the choice of the parameter γ\gamma in Skyrme interaction.Comment: 15 pages, 9 figure

    Nuclear matter properties and relativistic mean-field theory

    Get PDF
    Nuclear matter properties are calculated in the relativistic mean field theory by using a number of different parameter sets. The result shows that the volume energy a1a_1 and the symmetry energy JJ are around the acceptable values 16MeV and 30MeV respectively; the incompressibility K0K_0 is unacceptably high in the linear model, but assumes reasonable value if nonlinear terms are included; the density symmetry LL is around 100MeV100MeV for most parameter sets, and the symmetry incompressibility KsK_s has positive sign which is opposite to expectations based on the nonrelativistic model. In almost all parameter sets there exists a critical point (ρc,δc)(\rho_c, \delta_c), where the minimum and the maximum of the equation of state are coincident and the incompressibility equals zero, falling into ranges 0.014fm3<ρc<0.039^{-3}<\rho_c<0.039fm3^{-3} and 0.74<δc0.950.74<\delta_c\le0.95; for a few parameter sets there is no critical point and the pure neutron matter is predicted to be bound. The maximum mass MNSM_{NS} of neutron stars is predicted in the range 2.45MMNS3.26_\odot\leq M_{NS}\leq 3.26M_\odot, the corresponding neutron star radius RNSR_{NS} is in the range 12.2kmRNS15.1\leq R_{NS}\leq 15.1km.Comment: 10 pages, 5 figure

    Formation of color-singlet gluon-clusters and inelastic diffractive scattering

    Get PDF
    This is the extensive follow-up report of a recent Letter in which the existence of self-organized criticality (SOC) in systems of interacting soft gluons is proposed, and its consequences for inelastic diffractive scattering processes are discussed. It is pointed out, that color-singlet gluon-clusters can be formed in hadrons as a consequence of SOC in systems of interacting soft gluons, and that the properties of such spatiotemporal complexities can be probed experimentally by examing inelastic diffractive scattering. Theoretical arguments and experimental evidences supporting the proposed picture are presented --- together with the result of a systematic analysis of the existing data for inelastic diffractive scattering processes performed at different incident energies, and/or by using different beam-particles. It is shown in particular that the size- and the lifetime-distributions of such gluon-clusters can be directly extracted from the data, and the obtained results exhibit universal power-law behaviors --- in accordance with the expected SOC-fingerprints. As further consequences of SOC in systems of interacting soft gluons, the tt-dependence and the (Mx2/s)(M_x^2/s)-dependence of the double differential cross-sections for inelastic diffractive scattering off proton-target are discussed. Here tt stands for the four-momentum-transfer squared, MxM_x for the missing mass, and s\sqrt{s} for the total c.m.s. energy. It is shown, that the space-time properties of the color-singlet gluon-clusters due to SOC, discussed above, lead to simple analytical formulae for d2σ/dtd(Mx2/s)d^2\sigma/dt d(M_x^2/s) and for dσ/dtd\sigma/dt, and that the obtained results are in good agreement with the existing data. Further experiments are suggested.Comment: 67 pages, including 11 figure

    Spectral Weights, d-wave Pairing Amplitudes, and Particle-hole Tunneling Asymmetry of a Strongly Correlated Superconductor

    Get PDF
    The spectral weights (SW's) for adding and removing an electron of the Gutzwiller projected d-wave superconducting (SC) state of the t-J-type models are studied numerically on finite lattices. Restrict to the uniform system but treat exactly the strong correlation between electrons, we show that the product of weights is equal to the pairing amplitude squared, same as in the weakly coupled case. In addition, we derive a rigorous relation of SW with doping in the electron doped system and obtain particle-hole asymmetry of the conductance-proportional quantity within the SC gap energy and, also, the anti-correlation between gap sizes and peak heights observed in tunneling spectroscopy on high Tc cuprates.Comment: 4 Revtex pages and 4 .eps figures. Published versio

    Designing Geotextile Support for Submarine Power Cables

    Get PDF
    Six 36 cm diameter submarine pipe-cables were buried in a 1.2 km long, fabric-lined trench in the soft river mud under 17 m average water head across the Hudson River about 4.8 km north of the Newburgh Bridge, New York. This paper describes the design considerations based on geotechnical point of view of using geotextile to support submarine power cables
    corecore