5,635 research outputs found

    Future management needs of a "software-driven" science community

    Full text link
    The work of astronomers is getting more complex and advanced as the progress of computer development occurs. With improved computing capabilities and increased data flow, more sophisticated software is required in order to interpret, and fully exploit, astronomic data. However, it is not possible for every astronomer to also be a software specialist. As history has shown, the work of scientists always becomes increasingly specialised, and we here argue in favour of another, at least partial, split between "programmers" and "interpreters". In this presentation we outline our vision for a new approach and symbiosis between software specialists and scientists, and present its advantages along with a simple test case.Comment: 7 pages, 3 figures, as presented at SPIE Astronomical instrumentation 201

    Berndt Erneholm

    Get PDF

    Utviklingstrekk - samarbeide over landegrensene

    Get PDF
    Introductory lecture in Norwegian about cooperation across Nordic borders with primary focus on the Nordic Council for Reindeer Research (NOR) by the former Director of the Norwegian Reindeer Husbandry Administration

    Formannen har ordet

    Get PDF
    Formannen i NOR hilser til alle som deltar i og er interessert i reinforskning

    Electron-phonon interaction in Graphite Intercalation Compounds

    Full text link
    Motivated by the recent discovery of superconductivity in Ca- and Yb-intercalated graphite (CaC6_{6} and YbC6_{6}) and from the ongoing debate on the nature and role of the interlayer state in this class of compounds, in this work we critically study the electron-phonon properties of a simple model based on primitive graphite. We show that this model captures an essential feature of the electron-phonon properties of the Graphite Intercalation Compounds (GICs), namely, the existence of a strong dormant electron-phonon interaction between interlayer and π\pi ^{\ast} electrons, for which we provide a simple geometrical explanation in terms of NMTO Wannier-like functions. Our findings correct the oversimplified view that nearly-free-electron states cannot interact with the surrounding lattice, and explain the empirical correlation between the filling of the interlayer band and the occurrence of superconductivity in Graphite-Intercalation Compounds.Comment: 13 pages, 12 figures, submitted to Phys. Rev.

    Gutzwiller theory of band magnetism in LaOFeAs

    Full text link
    We use the Gutzwiller variational theory to calculate the ground-state phase diagram and quasi-particle bands of LaOFeAs. The Fe3d--As4p Wannier-orbital basis obtained from density-functional theory defines the band part of our eight-band Hubbard model. The full atomic interaction between the electrons in the iron orbitals is parameterized by the Hubbard interaction U and an average Hund's-rule interaction J. We reproduce the experimentally observed small ordered magnetic moment over a large region of (U,J) parameter space. The magnetically ordered phase is a stripe spin-density wave of quasi-particles.Comment: 4 pages, 5 figure
    corecore