163,868 research outputs found
Earthquake source parameters of the 2009 Mw 7.8 Fiordland (New Zealand) earthquake from L-band InSAR observations
The 2009 MW7.8 Fiordland (New Zealand) earthquake is the largest to have occurred in New Zealand since the 1931 Mw 7.8 Hawke’s Bay earthquake, 1 000 km to the northwest. In this paper two tracks of ALOS PALSAR interferograms (one ascending and one descending) are used to determine fault geometry and slip distribution of this large earthquake. Modeling the event as dislocation in an elastic half-space suggests that the earthquake resulted from slip on a SSW-NNE orientated thrust fault that is associated with the subduction between the Pacific and Australian Plates, with oblique displacement of up to 6.3 m. This finding is consistent with the preliminary studies undertaken by the USGS using seismic data
Tunnelling Effect and Hawking Radiation from a Vaidya Black Hole
In this paper, we extend Parikh' work to the non-stationary black hole. As an
example of the non-stationary black hole, we study the tunnelling effect and
Hawking radiation from a Vaidya black hole whose Bondi mass is identical to its
mass parameter. We view Hawking radiation as a tunnelling process across the
event horizon and calculate the tunnelling probability. We find that the result
is different from Parikh's work because is the function of
Bondi mass m(v)
Generalized Dynamic Scaling for Critical Relaxations
The dynamic relaxation process for the two dimensional Potts model at
criticality starting from an initial state with very high temperature and
arbitrary magnetization is investigated with Monte Carlo methods. The results
show that there exists universal scaling behaviour even in the short-time
regime of the dynamic evolution. In order to describe the dependence of the
scaling behaviour on the initial magnetization, a critical characteristic
function is introduced.Comment: Latex, 8 pages, 3 figures, to appear in Phys. Rev. Let
Application of DInSAR-GPS optimization for derivation of fine-scale surface motion maps of Southern California
A method based on random field theory and Gibbs-Markov random fields equivalency within Bayesian statistical framework is used to derive 3-D surface motion maps from sparse global positioning system (GPS) measurements and differential interferometric synthetic aperture radar (DInSAR) interferogram in the southern California region. The minimization of the Gibbs energy function is performed analytically, which is possible in the case when neighboring pixels are considered independent. The problem is well posed and the solution is unique and stable and not biased by the continuity condition. The technique produces a 3-D field containing estimates of surface motion on the spatial scale of the DInSAR image, over a given time period, complete with error estimates. Significant improvement in the accuracy of the vertical component and moderate improvement in the accuracy of the horizontal components of velocity are achieved in comparison with the GPS data alone. The method can be expanded to account for other available data sets, such as additional interferograms, lidar, or leveling data, in order to achieve even higher accuracy
- …