2,518 research outputs found

    Effective Superpotentials for SO/Sp with Flavor from Matrix Models

    Get PDF
    We study matrix models related to SO/SpSO/Sp gauge theories with flavors. We give the effective superpotentials for gauge theories with arbitrary tree level superpotential up to first instanton level. For quartic tree level superpotential we obtained exact one-cut solution. We also derive Seiberg-Witten curve for these gauge theories from matrix model argument.Comment: 17pp,2 figures, v2;refs added and to appear in MPL

    Oblique Ion Two-Stream Instability in the Foot Region of a Collisionless Shock

    Full text link
    Electrostatic behavior of a collisionless plasma in the foot region of high Mach number perpendicular shocks is investigated through the two-dimensional linear analysis and electrostatic particle-in-cell (PIC) simulation. The simulations are double periodic and taken as a proxy for the situation in the foot. The linear analysis for relatively cold unmagnetized plasmas with a reflected proton beam shows that obliquely propagating Buneman instability is strongly excited. We also found that when the electron temperature is much higher than the proton temperature, the most unstable mode is the highly obliquely propagating ion two-stream instability excited through the resonance between ion plasma oscillations of the background protons and of the beam protons, rather than the ion acoustic instability that is dominant for parallel propagation. To investigate nonlinear behavior of the ion two-stream instability, we have made PIC simulations for the shock foot region in which the initial state satisfies the Buneman instability condition. In the first phase, electrostatic waves grow two-dimensionally by the Buneman instability to heat electrons. In the second phase, highly oblique ion two-stream instability grows to heat mainly ions. This result is in contrast to previous studies based on one-dimensional simulations, for which ion acoustic instability further heats electrons. The present result implies that overheating problem of electrons for shocks in supernova remnants is resolved by considering ion two-stream instability propagating highly obliquely to the shock normal and that multi-dimensional analysis is crucial to understand the particle heating and acceleration processes in shocks.Comment: 20 pages, 9 figures, accepted for publication in Ap

    A Simple Measurement of Turbulence in Cores of Galaxy Clusters

    Full text link
    Using a simple model, we study the effects of turbulence on the motion of bubbles produced by AGN jet activities in the core of a galaxy cluster. We focus on the turbulence with scales larger then the size of the bubbles. We show that for a bubble pair with an age of ~10^8 yr, the projected angle between the two vectors from the cluster center to the two bubbles should be ~> 90 degree and the ratio of their projected distances from the cluster center should be ~< 2.5, if the velocity and scale of the turbulence are ~250 km s^-1 and ~20 kpc, respectively. The positions of the bubbles observed in the Perseus cluster suggest that the turbulent velocity is ~>100 km s^-1 for the cluster.Comment: Accepted for publication in ApJ

    Absence of Electron Surfing Acceleration in a Two-Dimensional Simulation

    Full text link
    Electron acceleration in high Mach number perpendicular shocks is investigated through two-dimensional electrostatic particle-in-cell (PIC) simulation. We simulate the shock foot region by modeling particles that consist of three components such as incident protons and electrons and reflected protons in the initial state which satisfies the Buneman instability condition. In contrast to previous one-dimensional simulations in which strong surfing acceleration is realized, we find that surfing acceleration does not occur in two-dimensional simulation. This is because excited electrostatic potentials have a two-dimensional structure that makes electron trapping impossible. Thus, the surfing acceleration does not work either in itself or as an injection mechanism for the diffusive shock acceleration. We briefly discuss implications of the present results on the electron heating and acceleration by shocks in supernova remnants.Comment: 12 pages, 4 figures, accepted for publication in ApJ

    Effective theories of gauge-Higgs unification models in warped spacetime

    Full text link
    We derive four-dimensional (4D) effective theories of the gauge-Higgs unification models in the warped spacetime. The effective action can be expressed in a simple form by neglecting subleading corrections to the wave functions. We have shown in our previous works that some Higgs couplings to the other fields are suppressed by factors that depend on θˉH\bar{\theta}_H from the values in the standard model. Here θˉH\bar{\theta}_H is the Wilson line phase along the fifth dimension, which characterizes the electroweak symmetry breaking. The effective action derived here explicitly shows a nonlinear structure of the Higgs sector, which clarifies the origins of those suppression factors.Comment: 36 pages, 1 figur

    Strong Turbulence in the Cool Cores of Galaxy Clusters: Can Tsunamis Solve the Cooling Flow Problem?

    Full text link
    Based on high-resolution two-dimensional hydrodynamic simulations, we show that the bulk gas motions in a cluster of galaxies, which are naturally expected during the process of hierarchical structure formation of the universe, have a serous impact on the core. We found that the bulk gas motions represented by acoustic-gravity waves create local but strong turbulence, which reproduces the complicated X-ray structures recently observed in cluster cores. Moreover, if the wave amplitude is large enough, they can suppress the radiative cooling of the cores. Contrary to the previous studies, the heating is operated by the turbulence, not weak shocks. The turbulence could be detected in near-future space X-ray missions such as ASTRO-E2.Comment: Movies are available at http://th.nao.ac.jp/tsunami/index.ht

    Quantitative Estimates of Environmental Effects on the Star Formation Rate of Disk Galaxies in Clusters of Galaxies

    Get PDF
    A simple model is constructed to evaluate the change of star formation rate of a disk galaxy due to environmental effects in clusters of galaxies. Three effects, (1) tidal force from the potential well of the cluster, (2) increase of external pressure when the galaxy plows into the intracluster medium, (3) high-speed encounters between galaxies, are investigated. General analysis indicates that the star formation rate increases significantly when the pressure of molecular clouds rises above 3×105cm3K\sim 3\times 10^5 cm^{-3} K in 108\sim 10^8 yr. The tidal force from the potential well of the cluster increases pressures of molecular clouds in a disk galaxy infalling towards the cluster center. Before the galaxy reaches the cluster center, the star formation rate reaches a maximum. The peak is three to four times larger than the initial value. If this is the main mechanism of the Butcher-Oemler effect, blue galaxies are expected to be located within 300\sim 300 kpc from the center of the cluster. However this prediction is inconsistent with the recent observations. The increase of external pressure when the galaxy plows into the intracluster medium does not change star formation rate of a disk galaxy significantly. The velocity perturbation induced by a single high-speed encounter between galaxies is too small to affect star formation rate of a disk galaxy, while successive high-speed encounters (galaxy harassment) trigger star formation activity because of the accumulation of gas in the galaxy center. Therefore, the galaxy harassment remains as the candidate for a mechanism of the Butcher-Oemler effect.Comment: 12 pages, 13 figures. To be published in Ap

    Open String on Symmetric Product

    Get PDF
    We develop some basic properties of the open string on the symmetric product which is supposed to describe the open string field theory in discrete lightcone quantization (DLCQ). After preparing the consistency conditions of the twisted boundary conditions for Annulus/M\"obius/Klein Bottle amplitudes in generic non-abelian orbifold, we classify the most general solutions of the constraints when the discrete group is SNS_N. We calculate the corresponding orbifold amplitudes from two viewpoints -- from the boundary state formalism and from the trace over the open string Hilbert space. It is shown that the topology of the world sheet for the short string and that of the long string in general do not coincide. For example the annulus sector for the short string contains all the sectors (torus, annulus, Klein bottle, M\"obius strip) of the long strings. The boundary/cross-cap states of the short strings are classified into three categories in terms of the long string, the ordinary boundary and the cross-cap states, and the ``joint'' state which describes the connection of two short strings. We show that the sum of the all possible boundary conditions is equal to the exponential of the sum of the irreducible amplitude -- one body amplitude of long open (closed) strings. This is typical structure of DLCQ partition function. We examined that the tadpole cancellation condition in our language and derived the well-known gauge group SO(213)SO(2^{13}).Comment: 56 pages, 11 figures, Late

    Ground state of an S=1/2S=1/2 distorted diamond chain - model of Cu3Cl6(H2O)22H8C4SO2\rm Cu_3 Cl_6 (H_2 O)_2 \cdot 2H_8 C_4 SO_2

    Full text link
    We study the ground state of the model Hamiltonian of the trimerized S=1/2S=1/2 quantum Heisenberg chain Cu3Cl6(H2O)22H8C4SO2\rm Cu_3 Cl_6 (H_2 O)_2 \cdot 2H_8 C_4 SO_2 in which the non-magnetic ground state is observed recently. This model consists of stacked trimers and has three kinds of coupling constants between spins; the intra-trimer coupling constant J1J_1 and the inter-trimer coupling constants J2J_2 and J3J_3. All of these constants are assumed to be antiferromagnetic. By use of the analytical method and physical considerations, we show that there are three phases on the J~2J~3\tilde J_2 - \tilde J_3 plane (J~2J2/J1\tilde J_2 \equiv J_2/J_1, J~3J3/J1\tilde J_3 \equiv J_3/J_1), the dimer phase, the spin fluid phase and the ferrimagnetic phase. The dimer phase is caused by the frustration effect. In the dimer phase, there exists the excitation gap between the two-fold degenerate ground state and the first excited state, which explains the non-magnetic ground state observed in Cu3Cl6(H2O)22H8C4SO2\rm Cu_3 Cl_6 (H_2 O)_2 \cdot 2H_8 C_4 SO_2. We also obtain the phase diagram on the J~2J~3 \tilde J_2 - \tilde J_3 plane from the numerical diagonalization data for finite systems by use of the Lanczos algorithm.Comment: LaTeX2e, 15 pages, 21 eps figures, typos corrected, slightly detailed explanation adde

    THE EFFECTS OF A MARATHON RACE ON RUNNING ECONOMY AND LEG MUSCULAR STRENGTH AND POWER

    Get PDF
    INTRODUCTION: Previous studies have reported that running economy as well as leg muscular strength and power decrease after a marathon race(Nicol et al., 1991 ; Chevrolet et al. 1993). However, the relationship between the change in running economy and the change in muscular strength and power is still unclear. Therefore, the purpose of this study was to examine the effects of a marathon race on running economy, as well as leg muscular strength and power. Relationships among race performance, decrease in running economy and decrease in leg muscular strength and power were also investigated. METHODS: Thirteen healthy males performed treadmill running (200 m/min., 3 min.), isometric knee extension (3s), counter-movement-jump and 5-series-jumps 3-1 day(s) before (PRE) and immediately after (POST) participating in either the 1996 or 1997 "Tsukuba marathon race (42.195 km) ". RESULTS: 1) Mean race time of the marathon was 2 hours 57 minutes 39 seconds. Average running speed during the latter half of the race was significantly lower than the former half . 2) In comparison to PRE, oxygen consumption during treadmill running in POST increased significantly while maximal strength of isometric knee extension, jumping height of counter-movement-jump and jumping height of 5-series-jumps decreased significantly . 3) There were no relationships between percent change ((Post-Pre)/Pre x 100) in oxygen consumption during treadmill running and percent change in leg muscular strength and power. 4) There was a significant correlation between percent change ((Latter- Former)/Former x 100) in running speed during the race and percent change in jumping height of counter-movement-jump (r=0.541). However, no significant relationship was observed between percent change in running speed and percent change in running economy. CONCLUSION: Running a marathon race decreases both running economy and muscular strength and power but these seem to be caused by different mechanisms. The decrease in leg muscular strength and power during the marathon race seems have been an influence on the decrease in running speed during the latter half of the race. REFERENCES Chevrolet et al. (1993) Med. Sci. Sports Exerc. 25:501-507. Nicol et al. (1991) Scand. J. Sports Med. 1:195-204
    corecore