71 research outputs found

    Site-Specific Labeling of Annexin V with F-18 for Apoptosis Imaging

    Get PDF
    Annexin V is useful in detecting apoptotic cells by binding to phosphatidylserine (PS) that is exposed on the outer surface of the cell membrane during apoptosis. In this study, we examined the labeling of annexin V-128, a mutated form of annexin V that has a single cysteine residue at the NH2 terminus, with the thiol-selective reagent 18F-labeling agent N-[4-[(4-[18F]fluorobenzylidene)aminooxy]butyl]maleimide ([18F]FBABM). We also examined the cell binding affinity of the 18F-labeled annexin V-128 ([18F]FAN-128). [18F]FBABM was synthesized in two-step, one-pot method modified from literature procedure. (Toyokuni et al., Bioconjugate Chem. 2003, 14, 1253−1259). The average yield of [18F]FBABM was 23 ± 4% (n = 4, decay-corrected) and the specific activity was ∼6000 Ci/mmol. The total synthesis time was ∼92 min. The critical improvement of this study was identifying and then developing a purification method to remove an impurity N-[4-[(4-dimethylaminobenzylidene)aminooxy]butyl]maleimide 4, whose presence dramatically decreased the yield of protein labeling. Conjugation of [18F]FBABM with the thiol-containing annexin V-128 gave [18F]FAN-128 in 37 ± 9% yield (n = 4, decay corrected). Erythrocyte binding assay of [18F]FAN-128 showed that this modification of annexin V-128 did not compromise its membrane binding affinity. Thus, an in vivo investigation of [18F]FAN-128 as an apoptosis imaging agent is warranted

    Effects of Ethanol and NAP on Cerebellar Expression of the Neural Cell Adhesion Molecule L1

    Get PDF
    The neural cell adhesion molecule L1 is critical for brain development and plays a role in learning and memory in the adult. Ethanol inhibits L1-mediated cell adhesion and neurite outgrowth in cerebellar granule neurons (CGNs), and these actions might underlie the cerebellar dysmorphology of fetal alcohol spectrum disorders. The peptide NAP potently blocks ethanol inhibition of L1 adhesion and prevents ethanol teratogenesis. We used quantitative RT-PCR and Western blotting of extracts of cerebellar slices, CGNs, and astrocytes from postnatal day 7 (PD7) rats to investigate whether ethanol and NAP act in part by regulating the expression of L1. Treatment of cerebellar slices with 20 mM ethanol, 10−12 M NAP, or both for 4 hours, 24 hours, and 10 days did not significantly affect L1 mRNA and protein levels. Similar treatment for 4 or 24 hours did not regulate L1 expression in primary cultures of CGNs and astrocytes, the predominant cerebellar cell types. Because ethanol also damages the adult cerebellum, we studied the effects of chronic ethanol exposure in adult rats. One year of binge drinking did not alter L1 gene and protein expression in extracts from whole cerebellum. Thus, ethanol does not alter L1 expression in the developing or adult cerebellum; more likely, ethanol disrupts L1 function by modifying its conformation and signaling. Likewise, NAP antagonizes the actions of ethanol without altering L1 expression

    Effects of organophosphate exposure on muscarinic acetylcholine receptor subtype mRNA levels in the adult rat

    No full text
    Repeated exposure to organophosphorus (OP) insecticides results in a decrease of muscarinic acetylcholine receptors (MRs) in the central nervous system. OP-induced MR down-regulation in vivo is modeled by chronic in vitro exposure to muscarinic agonists. Many studies, both in vivo and in vitro, indicate that the treatment-induced decrease in MR number is accompanied by a decrease in the mRNA levels of specific MR subtypes. In this study, the in vivo effects of OP exposure on the mRNA levels of three MR subtypes (m1, m2, and m3) were examined in brain tissue and in peripheral mononuclear cells, which express the m3 subtype. Adult male Sprague-Dawley rats were orally administered disulfoton (2 mg/kg/day) for 14 days, and a subset of exposed animals was allowed to recover for 28 days. This treatment caused a 28% and 81% decrease, respectively, in [3H]-QNB binding and acetylcholinesterase activity in the cortex, similar to that observed in previous studies; after recovery, these levels had returned to 99% and 90%, respectively, of controls. There was a significant decrease in m1 mRNA levels in hippocampus (23%) after disulfoton treatment, while no change was observed in the cortex, corpus striatum, medulla, or cerebellum. The m2 subtype mRNA was significantly decreased in both hippocampus (24%) and medulla (19%), but not in cortex, striatum, or cerebellum. m3 mRNA levels were significantly decreased in cortex (10%), but no change was observed in hippocampus, medulla, cerebellum, or lymphocytes. After recovery, no differences in m1 or m3 mRNA levels were observed in any tissue examined, whereas the decrease in m2 mRNA in the hippocampus remained significant (29%). These results indicate that OP exposure can differentially regulate mRNA levels for MR subtypes in different brain areas, and suggest that m2 muscarinic receptors in the hippocampus are most affected by this treatment

    Effects of alcohol on immediate-early gene expression in primary cultures of rat cortical astrocytes

    No full text
    Ethanol is a potent inhibitor of muscarinic receptor-mediated proliferation in glial cells. Glial proliferation has been suggested as a major target of ethanol neurotoxicity during development, leading to the microencephaly that is a predominant feature of fetal alcohol syndrome. As part of an attempt to understand the mechanism of ethanol's inhibitory effects on muscarinic receptor-mediated proliferation, this study investigated the effects of ethanol on the expression of the immediate-early genes (IEGs), c-fos and c-myc, whose induction is thought to be an essential first step in the initiation of the mitogenic program. Unexpectedly, ethanol had no inhibitory effect on c-fos and c-myc mRNA expression induced in primary rat cortical astrocytes by the mitogens carbachol, histamine, or tetradecanoyl phorbol 13-acetate; rather, a modest potentiation of IEG expression was observed in the presence of 25 to 100 mM ethanol. Control experiments showed that ethanol alone was capable of IEG mRNA induction, with 100 mM ethanol inducing IEG mRNA levels comparable with those induced by 100 ng/ml of tetradecanoyl phorbol 13-acetate; as measured by [3H]thymidine incorporation, however, 25 to 100 mM ethanol had no effect on proliferation. Experiments with the protein kinase C inhibitor bisindolylmaleimide and the Ca2+ chelators BAPTA and EGTA indicated that this IEG induction by ethanol was not mediated by protein kinase C or Ca2+. A possible explanation for this ethanol-induced IEG expression in the absence of a proliferative effect might be found in the increasing number of studies showing IEG involvement (especially that of c-myc) in apoptosis
    corecore