141 research outputs found

    An Analytical Construction of the SRB Measures for Baker-type Maps

    Get PDF
    For a class of dynamical systems, called the axiom-A systems, Sinai, Ruelle and Bowen showed the existence of an invariant measure (SRB measure) weakly attracting the temporal average of any initial distribution that is absolutely continuous with respect to the Lebesgue measure. Recently, the SRB measures were found to be related to the nonequilibrium stationary state distribution functions for thermostated or open systems. Inspite of the importance of these SRB measures, it is difficult to handle them analytically because they are often singular functions. In this article, for three kinds of Baker-type maps, the SRB measures are analytically constructed with the aid of a functional equation, which was proposed by de Rham in order to deal with a class of singular functions. We first briefly review the properties of singular functions including those of de Rham. Then, the Baker-type maps are described, one of which is non-conservative but time reversible, the second has a Cantor-like invariant set, and the third is a model of a simple chemical reaction R↔I↔PR \leftrightarrow I \leftrightarrow P. For the second example, the cases with and without escape are considered. For the last example, we consider the reaction processes in a closed system and in an open system under a flux boundary condition. In all cases, we show that the evolution equation of the distribution functions partially integrated over the unstable direction is very similar to de Rham's functional equation and, employing this analogy, we explicitly construct the SRB measures.Comment: 53 pages, 10 figures, to appear in CHAO

    How to detect a possible correlation from the information of a sub-system in quantum mechanical systems

    Full text link
    A possibility to detect correlations between two quantum mechanical systems only from the information of a subsystem is investigated. For generic cases, we prove that there exist correlations between two quantum systems if the time-derivative of the reduced purity is not zero. Therefore, an experimentalist can conclude non-zero correlations between his/her system and some environment if he/she finds the time-derivative of the reduced purity is not zero. A quantitative estimation of a time-derivative of the reduced purity with respect to correlations is also given. This clarifies the role of correlations in the mechanism of decoherence in open quantum systems.Comment: 7 pages, 1 figur

    Superposition in nonlinear wave and evolution equations

    Full text link
    Real and bounded elliptic solutions suitable for applying the Khare-Sukhatme superposition procedure are presented and used to generate superposition solutions of the generalized modified Kadomtsev-Petviashvili equation (gmKPE) and the nonlinear cubic-quintic Schroedinger equation (NLCQSE).Comment: submitted to International Journal of Theoretical Physics, 23 pages, 2 figures, style change

    Properties of the series solution for Painlevé I

    Get PDF
    We present some observations on the asymptotic behaviour of the coefficients in the Laurent series expansion of solutions of the first Painlevé equation. For the general solution, explicit recursive formulae for the Taylor expansion of the tau-function around a zero are given, which are natural extensions of analogous formulae for the elliptic sigma function, as given by Weierstrass. Numerical and exact results on the symmetric solution which is singular at the origin are also presented

    Gravitational Instantons from Minimal Surfaces

    Get PDF
    Physical properties of gravitational instantons which are derivable from minimal surfaces in 3-dimensional Euclidean space are examined using the Newman-Penrose formalism for Euclidean signature. The gravitational instanton that corresponds to the helicoid minimal surface is investigated in detail. This is a metric of Bianchi Type VII0VII_0, or E(2) which admits a hidden symmetry due to the existence of a quadratic Killing tensor. It leads to a complete separation of variables in the Hamilton-Jacobi equation for geodesics, as well as in Laplace's equation for a massless scalar field. The scalar Green function can be obtained in closed form which enables us to calculate the vacuum fluctuations of a massless scalar field in the background of this instanton.Comment: One figure available by fax upon request. Abstract missing in original submission. Submitted to Classical and Quantum Gravit

    Toda Equations and σ\sigma-Functions of Genera One and Two

    Full text link
    We study the Toda equations in the continuous level, discrete level and ultradiscrete level in terms of elliptic and hyperelliptic σ\sigma and ψ\psi functions of genera one and two. The ultradiscrete Toda equation appears as a discrete-valuation of recursion relations of ψ\psi functions.Comment: 16 page

    Surfaces immersed in su(N+1) Lie algebras obtained from the CP^N sigma models

    Full text link
    We study some geometrical aspects of two dimensional orientable surfaces arrising from the study of CP^N sigma models. To this aim we employ an identification of R^(N(N+2)) with the Lie algebra su(N+1) by means of which we construct a generalized Weierstrass formula for immersion of such surfaces. The structural elements of the surface like its moving frame, the Gauss-Weingarten and the Gauss-Codazzi-Ricci equations are expressed in terms of the solution of the CP^N model defining it. Further, the first and second fundamental forms, the Gaussian curvature, the mean curvature vector, the Willmore functional and the topological charge of surfaces are expressed in terms of this solution. We present detailed implementation of these results for surfaces immersed in su(2) and su(3) Lie algebras.Comment: 32 pages, 1 figure; changes: major revision of presentation, clarifications adde

    Wave Solutions of Evolution Equations and Hamiltonian Flows on Nonlinear Subvarieties of Generalized Jacobians

    Full text link
    The algebraic-geometric approach is extended to study solutions of N-component systems associated with the energy dependent Schrodinger operators having potentials with poles in the spectral parameter, in connection with Hamiltonian flows on nonlinear subvariaties of Jacobi varieties. The systems under study include the shallow water equation and Dym type equation. The classes of solutions are described in terms of theta-functions and their singular limits by using new parameterizations. A qualitative description of real valued solutions is provided
    • …
    corecore