136 research outputs found
Grain Dynamics in a Two-dimensional Granular Flow
We have used particle tracking methods to study the dynamics of individual
balls comprising a granular flow in a small-angle two-dimensional funnel. We
statistically analyze many ball trajectories to examine the mechanisms of shock
propagation. In particular, we study the creation of, and interactions between,
shock waves. We also investigate the role of granular temperature and draw
parallels to traffic flow dynamics.Comment: 17 pages, 24 figures. To appear in Phys.Rev.E. High res./color
figures etc. on http://www.nbi.dk/CATS/Granular/GrainDyn.htm
Footprints in Sand: The Response of a Granular Material to Local Perturbations
We experimentally determine ensemble-averaged responses of granular packings
to point forces, and we compare these results to recent models for force
propagation in a granular material. We used 2D granular arrays consisting of
photoelastic particles: either disks or pentagons, thus spanning the range from
ordered to disordered packings. A key finding is that spatial ordering of the
particles is a key factor in the force response. Ordered packings have a
propagative component that does not occur in disordered packings.Comment: 5 pages, 4 eps figures, Phys. Rev. Lett. 87, 035506 (2001
Particle dynamics in sheared granular matter
The particle dynamics and shear forces of granular matter in a Couette
geometry are determined experimentally. The normalized tangential velocity
declines strongly with distance from the moving wall, independent of
the shear rate and of the shear dynamics. Local RMS velocity fluctuations
scale with the local velocity gradient to the power . These results agree with a locally Newtonian, continuum model, where the
granular medium is assumed to behave as a liquid with a local temperature
and density dependent viscosity
Granular discharge and clogging for tilted hoppers
We measure the flux of spherical glass beads through a hole as a systematic
function of both tilt angle and hole diameter, for two different size beads.
The discharge increases with hole diameter in accord with the Beverloo relation
for both horizontal and vertical holes, but in the latter case with a larger
small-hole cutoff. For large holes the flux decreases linearly in cosine of the
tilt angle, vanishing smoothly somewhat below the angle of repose. For small
holes it vanishes abruptly at a smaller angle. The conditions for zero flux are
discussed in the context of a {\it clogging phase diagram} of flow state vs
tilt angle and ratio of hole to grain size
Self-diffusion in dense granular shear flows
Diffusivity is a key quantity in describing velocity fluctuations in granular
materials. These fluctuations are the basis of many thermodynamic and
hydrodynamic models which aim to provide a statistical description of granular
systems. We present experimental results on diffusivity in dense, granular
shear in a 2D Couette geometry. We find that self-diffusivities are
proportional to the local shear rate with diffusivities along the mean flow
approximately twice as large as those in the perpendicular direction. The
magnitude of the diffusivity is D \approx \dot\gamma a^2 where a is the
particle radius. However, the gradient in shear rate, coupling to the mean
flow, and drag at the moving boundary lead to particle displacements that can
appear sub- or super-diffusive. In particular, diffusion appears superdiffusive
along the mean flow direction due to Taylor dispersion effects and subdiffusive
along the perpendicular direction due to the gradient in shear rate. The
anisotropic force network leads to an additional anisotropy in the diffusivity
that is a property of dense systems with no obvious analog in rapid flows.
Specifically, the diffusivity is supressed along the direction of the strong
force network. A simple random walk simulation reproduces the key features of
the data, such as the apparent superdiffusive and subdiffusive behavior arising
from the mean flow, confirming the underlying diffusive motion. The additional
anisotropy is not observed in the simulation since the strong force network is
not included. Examples of correlated motion, such as transient vortices, and
Levy flights are also observed. Although correlated motion creates velocity
fields qualitatively different from Brownian motion and can introduce
non-diffusive effects, on average the system appears simply diffusive.Comment: 13 pages, 20 figures (accepted to Phys. Rev. E
Low-energy M1 and E3 excitations in the proton-rich Kr-Zr region
Low-energy intrinsic =1, , , , and states in
the even-even proton-rich Sr, Kr, and Zr nuclei are investigated using the
quasiparticle random phase approximation. In the ZN nuclei the
lowest-lying 1 states are found to carry unusually large strength.
It is demonstrated that, unlike in the heavier nuclei, the octupole
collectivity in the light zirconium region is small and, thus, is not directly
correlated with the systematics of the lowest negative parity states.Comment: 15pages, REVTEX 3.0, JIHIR(ORNL) Document no.93-17, Postscript files
for 14 figures are available on request from T.Nakatsusaka at
[email protected]
Partially fluidized shear granular flows: Continuum theory and MD simulations
The continuum theory of partially fluidized shear granular flows is tested
and calibrated using two dimensional soft particle molecular dynamics
simulations. The theory is based on the relaxational dynamics of the order
parameter that describes the transition between static and flowing regimes of
granular material. We define the order parameter as a fraction of static
contacts among all contacts between particles. We also propose and verify by
direct simulations the constitutive relation based on the splitting of the
shear stress tensor into a``fluid part'' proportional to the strain rate
tensor, and a remaining ``solid part''. The ratio of these two parts is a
function of the order parameter. The rheology of the fluid component agrees
well with the kinetic theory of granular fluids even in the dense regime. Based
on the hysteretic bifurcation diagram for a thin shear granular layer obtained
in simulations, we construct the ``free energy'' for the order parameter. The
theory calibrated using numerical experiments with the thin granular layer is
applied to the surface-driven stationary two dimensional granular flows in a
thick granular layer under gravity.Comment: 20 pages, 19 figures, submitted to Phys. Rev.
Plastic Flow in Two-Dimensional Solids
A time-dependent Ginzburg-Landau model of plastic deformation in
two-dimensional solids is presented. The fundamental dynamic variables are the
displacement field \bi u and the lattice velocity {\bi v}=\p {\bi u}/\p t.
Damping is assumed to arise from the shear viscosity in the momentum equation.
The elastic energy density is a periodic function of the shear and tetragonal
strains, which enables formation of slips at large strains. In this work we
neglect defects such as vacancies, interstitials, or grain boundaries. The
simplest slip consists of two edge dislocations with opposite Burgers vectors.
The formation energy of a slip is minimized if its orientation is parallel or
perpendicular to the flow in simple shear deformation and if it makes angles of
with respect to the stretched direction in uniaxial stretching.
High-density dislocations produced in plastic flow do not disappear even if
the flow is stopped. Thus large applied strains give rise to metastable,
structurally disordered states. We divide the elastic energy into an elastic
part due to affine deformation and a defect part. The latter represents degree
of disorder and is nearly constant in plastic flow under cyclic straining.Comment: 16pages, Figures can be obtained at
http://stat.scphys.kyoto-u.ac.jp/index-e.htm
Tenascin-C induces inflammatory mediators and matrix degradation in osteoarthritic cartilage
<p>Abstract</p> <p>Background</p> <p>Tenascin-C (TN-C) is an extracellular matrix glycoprotein that is involved in tissue injury and repair processes. We analyzed TN-C expression in normal and osteoarthritic (OA) human cartilage, and evaluated its capacity to induce inflammatory and catabolic mediators in chondrocytes <it>in vitro</it>. The effect of TN-C on proteoglycan loss from articular cartilage in culture was also assessed.</p> <p>Methods</p> <p>TN-C in culture media, cartilage extracts, and synovial fluid of human and animal joints was quantified using a sandwich ELISA and/or analyzed by Western immunoblotting. mRNA expression of TN-C and aggrecanases were analyzed by Taqman assays. Human and bovine primary chondrocytes and/or explant culture systems were utilized to study TN-C induced inflammatory or catabolic mediators and proteoglycan loss. Total proteoglycan and aggrecanase -generated ARG-aggrecan fragments were quantified in human and rat synovial fluids by ELISA.</p> <p>Results</p> <p>TN-C protein and mRNA expression were significantly upregulated in OA cartilage with a concomitant elevation of TN-C levels in the synovial fluid of OA patients. IL-1 enhanced TN-C expression in articular cartilage. Addition of TN-C induced IL-6, PGE<sub>2</sub>, and nitrate release and upregulated ADAMTS4 mRNA in cultured primary human and bovine chondrocytes. TN-C treatment resulted in an increased loss of proteoglycan from cartilage explants in culture. A correlation was observed between TN-C and aggrecanase generated ARG-aggrecan fragment levels in the synovial fluid of human OA joints and in the lavage of rat joints that underwent surgical induction of OA.</p> <p>Conclusions</p> <p>TN-C expression in the knee cartilage and TN-C levels measured in the synovial fluid are significantly enhanced in OA patients. Our findings suggest that the elevated levels of TN-C could induce inflammatory mediators and promote matrix degradation in OA joints.</p
Paraoxonase 1 Polymorphism and Prenatal Pesticide Exposure Associated with Adverse Cardiovascular Risk Profiles at School Age
Background: Prenatal environmental factors might influence the risk of developing cardiovascular disease later in life. The HDL-associated enzyme paraoxonase 1 (PON1) has anti-oxidative functions that may protect against atherosclerosis. It also hydrolyzes many substrates, including organophosphate pesticides. A common polymorphism, PON1 Q192R, affects both properties, but a potential interaction between PON1 genotype and pesticide exposure on cardiovascular risk factors has not been investigated. We explored if the PON1 Q192R genotype affects cardiovascular risk factors in school-age children prenatally exposed to pesticides. Methods: Pregnant greenhouse-workers were categorized as high, medium, or not exposed to pesticides. Their children underwent a standardized examination at age 6-to-11 years, where blood pressure, skin folds, and other anthropometric parameters were measured. PON1-genotype was determined for 141 children (88 pesticide exposed and 53 unexposed). Serum was analyzed for insulin-like growth factor I (IGF-I), insulin-like growth factor binding protein 3 (IGFBP3), insulin and leptin. Body fat percentage was calculated from skin fold thicknesses. BMI results were converted to age and sex specific Z-scores. Results: Prenatally pesticide exposed children carrying the PON1 192R-allele had higher abdominal circumference, body fat content, BMI Z-scores, blood pressure, and serum concentrations of leptin and IGF-I at school age than unexposed children. The effects were related to the prenatal exposure level. For children with the PON1 192QQ genotype, none of the variables was affected by prenatal pesticide exposure. Conclusion: Our results indicate a gene-environment interaction between prenatal pesticide exposure and the PON1 gene. Only exposed children with the R-allele developed adverse cardiovascular risk profiles thought to be associated with the R-allele
- …