108 research outputs found

    The Direct Synthesis of H <sub>2</sub> O <sub>2</sub> Using TS-1 Supported Catalysts

    Get PDF
    In this study we show that using gold palladium nanoparticles supported on a commercial titanium silicate (TS‐1) prepared using a wet co‐impregnation method it is possible to produce hydrogen peroxide from molecular H2 and O2 via the direct synthesis reaction. The effect of Au: Pd ratio and calcination temperature is evaluated as well as the role of platinum addition to the AuPd supported catalysts. The effect of platinum addition to gold‐palladium nanoparticles is observed to result in a significant improvement in catalytic activity and selectivity to hydrogen peroxide with detailed characterisation indicating this is a result of selectively tuning the ratio of palladium oxidation states

    Highly efficient catalytic production of oximes from ketones using in situ-generated H<sub>2</sub>O<sub>2</sub>

    Get PDF
    The ammoximation of cyclohexanone using preformed hydrogen peroxide (H2O2) is currently applied commercially to produce cyclohexanone oxime, an important feedstock in nylon-6 production. We demonstrate that by using supported gold-palladium (AuPd) alloyed nanoparticles in conjunction with a titanium silicate-1 (TS-1) catalyst, H2O2 can be generated in situ as needed, producing cyclohexanone oxime with >95% selectivity, comparable to the current industrial route. The ammoximation of several additional simple ketones is also demonstrated. Our approach eliminates the need to transport and store highly concentrated, stabilized H2O2, potentially achieving substantial environmental and economic savings. This approach could form the basis of an alternative route to numerous chemical transformations that are currently dependent on a combination of preformed H2O2 and TS-1, while allowing for considerable process intensification

    Cyclohexanone ammoximation via in situ H2O2 production using TS-1 supported catalysts

    Get PDF
    The ammoximation of cyclohexanone to the corresponding oxime via in situ H2O2 formation offers an attractive alternative to the current industrial means of production, overcoming the significant economic and environmental concerns associated with the manufacture of a key reagent, H2O2. Herein we demonstrate the efficacy of a composite catalyst, consisting of precious metal nanoparticles supported on a commercial TS-1, towards the in situ synthesis of cyclohexanone oxime, bridging the wide condition gap that exists between the two distinct reaction pathways: H2O2 direct synthesis and cyclohexanone ammoximation. In particular, the alloying of Au with Pd and the introduction of low concentrations of Pt into AuPd nanoalloys are found to be key in promoting high catalytic performance. The improved catalytic activity of optimal catalysts is found to result from a combination of a disruption of contiguous Pd ensembles and the modification of Pd oxidation states, which in turn dictate catalytic activity towards the production and subsequent degradation of H2O2

    Selective Ammoximation of Ketones via In Situ H2O2 Synthesis

    Get PDF
    The ammoximation of ketones to the corresponding oxime via the in situ production of H2O2 offers a viable alternative to the current means of industrial-scale production, in particular for the synthesis of cyclohexanone oxime, a key precursor to Nylon-6. Herein, we demonstrate that using a bifunctional catalyst, consisting of Pd-based bimetallic nanoparticles immobilized onto a TS-1 carrier, it is possible to bridge the considerable condition gap that exists between the two key distinct reaction pathways that constitute an in-situ approach (i.e., the direct synthesis of H2O2 and ketone ammoximation). The formation of PdAu nanoalloys is found to be crucial in achieving high reactivity and in promoting catalytic stability, with the optimal formulation significantly outperforming both alternative Pd-based materials and the monometallic Pd analogue

    The Direct Synthesis of H₂O₂ Using TS-1 Supported Catalysts

    No full text
    In this study we show that using AuPd nanoparticles supported on a commercial titanium silicate (TS‐1) prepared using a wet co‐impregnation method it is possible to produce hydrogen peroxide from molecular H2 and O2 via the direct synthesis reaction. The effect of Au: Pd ratio and calcination temperature is evaluated as well as the role of Pt addition to the AuPd supported catalysts. The effect of Pt addition to AuPt nanoparticles is observed to result in a significant improvement in catalytic activity and selectivity to hydrogen peroxide with detailed characterisation indicating this is a result of selectively tuning the ratio of Pd oxidation states

    A convenient chemical-microbial method for developing fluorinated pharmaceuticals

    Get PDF
    A significant proportion of pharmaceuticals are fluorinated and selecting the site of fluorine incorporation can be an important beneficial part a drug development process. Here we describe initial experiments aimed at the development of a general method of selecting optimum sites on pro - drug molecules for fluorination, so that metabolic stability may be improved. Several model biphenyl derivatives were transformed by the fungus Cunninghamella elegans and the bacterium Streptomyces griseus, both of which contain cytochromes P450 that mimic oxidation processes in vivo, so that the site of oxidation could be determined. Subsequently, fluorinated biphenyl derivatives were synthesised using appropriate Suzuki - Miyaura coupling reactions, positioning the fluorine atom at the pre - determined site of microbial oxidation; the fluorinated biphenyl derivatives were incubated with the microorganisms and the degree of oxidation assessed. Biphenyl-4-carboxylic acid was transformed completely to 4' - hydroxybiphenyl - 4 - carboxylic acid by C. elegans but, in contrast, the 4' fluoro - analogue remained untransformed exemplifying the microbial oxidation – chemical fluorination concept. 2' - Fluoro-and 3' - fluoro - biphenyl - 4 - carboxylic acid were also transformed, but more slowly than the non - fluorinated biphenyl carboxylic acid derivative. Thus, it is possible to design compounds in an iterative fashion with a longer metabolic half - life by identifying the sites that are most easily oxidised by in vitro methods and subsequent fluorination without recourse to extensive animal studies.Author has checked copyrightAD 23/04/201
    corecore