93 research outputs found
Solutions of the atmospheric, solar and LSND neutrino anomalies from TeV scale quark-lepton unification
There is a unique gauge model which
allows quarks and leptons to be unified at the TeV scale. It is already known
that the neutrino masses arise radiatively in the model and are naturally
light. We study the atmospheric, solar and LSND neutrino anomalies within the
framework of this model.Comment: Minor changes, 31 page
Molecular Hydrogen and [FeII] in Active Galactic Nuclei
(Abridge) Near-infrared spectroscopy is used to study the kinematics and
excitation mechanisms of the H2 and [FeII] gas in a sample of AGN. The H2 lines
are unresolved in all objects in which they were detected while the [FeII]
lines have widths implying gas velocities of up to 650 km/s. This suggests
that, very likely, the H2 and [FeII] emission does not originate from the same
parcel of gas. Molecular H2 were detected in 90% of the sample, including PG
objects, indicating detectavel amounts of molecular material even in objects
with low levels of circumnuclear starburst activity. The data favors thermal
excitation for the H2 lines. Indeed, in NGC3227, Mrk766, NGC4051 and NGC4151,
the molecular emission is found to be purely thermal. This result is also
confirmed by the rather similar vibrational and rotational temperatures in the
objects for which they were derived. [FeII] lines are detected in all of the
AGN. The [FeII] 1.254mu/Pa-beta ratio is compatible with excitation of the
[FeII] by the active nucleus, but in Mrk 766 it implies a stellar origin. A
correlation between H2/Br-gamma and [FeII]/Pa-beta is found. We confirm that it
is a useful diagnostic tool in the NIR to separate emitting line objects by
their level of nuclear activity. X-ray excitation models are able to explain
the observed H2 and part of the [FeII] emission. Most likely, a combination of
X-ray heating, shocks driven by the radio jet, and circumnuclear star formation
contributes, in different proportions, to the H2 and [FeII] emission. In most
of our spectra, the [FeII] 1.257mu/1.644mu ratio is found to be 30% lower than
the intrinsic value based on current atomic data. This implies either than the
extinction towards the [FeII] emitting clouds is very similar in most objects
or there are possible inaccuracies in the A-values in the [FeII] transitions.Comment: 18 pages, 6 figures, Accepted for publication in Astronomy &
Astrophysic
The role of beta-lactamase-producing-bacteria in mixed infections
Beta-lactamase-producing bacteria (BLPB) can play an important role in polymicrobial infections. They can have a direct pathogenic impact in causing the infection as well as an indirect effect through their ability to produce the enzyme beta-lactamase. BLPB may not only survive penicillin therapy but can also, as was demonstrated in in vitro and in vivo studies, protect other penicillin-susceptible bacteria from penicillin by releasing the free enzyme into their environment. This phenomenon occurs in upper respiratory tract, skin, soft tissue, surgical and other infections. The clinical, in vitro, and in vivo evidence supporting the role of these organisms in the increased failure rate of penicillin in eradication of these infections and the implication of that increased rate on the management of infections is discussed
Multispecies methods, technologies for play
School of Desig
How sharing can contribute to more sustainable cities
\ua9 2017 by the authors. Recently, much of the literature on sharing in cities has focused on the sharing economy, in which people use online platforms to share underutilized assets in the marketplace. This view of sharing is too narrow for cities, as it neglects the myriad of ways, reasons, and scales in which citizens share in urban environments. Research presented here by the Liveable Cities team in the form of participant workshops in Lancaster and Birmingham, UK, suggests that a broader approach to understanding sharing in cities is essential. The research also highlighted tools and methods that may be used to help to identify sharing in communities. The paper ends with advice to city stakeholders, such as policymakers, urban planners, and urban designers, who are considering how to enhance sustainability in cities through sharing
Recommended from our members
SGP Cloud and Land Surface Interaction Campaign (CLASIC): Measurement Platforms
The Cloud and Land Surface Interaction Campaign (CLASIC) will be conducted from June 8 to June 30, 2007, at the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Southern Great Plains (SGP) site. Data will be collected using eight aircraft equipped with a variety of specialized sensors, four specially instrumented surface sites, and two prototype surface radar systems. The architecture of CLASIC includes a high-altitude surveillance aircraft and enhanced vertical thermodynamic and wind profile measurements that will characterize the synoptic scale structure of the clouds and the land surface within the ACRF SGP site. Mesoscale and microscale structures will be sampled with a variety of aircraft, surface, and radar observations. An overview of the measurement platforms that will be used during the CLASIC are described in this report. The coordination of measurements, especially as it relates to aircraft flight plans, will be discussed in the CLASIC Implementation Plan
Spaceflight results in increase of thick filament but not thin filament proteins in the paramyosin mutant of Caenorhabditis elegans
We have investigated the effect of microgravity during spaceflight on body-wall muscle fiber size and muscle proteins in the paramyosin mutant of Caenorhabditis elegans. Both mutant and wild-type strains were subjected to 10 days of microgravity during spaceflight and compared to ground control groups. No significant change in muscle fiber size or quantity of the protein was observed in wild-type worms; where as atrophy of body-wall muscle and an increase in thick filament proteins were observed in the paramyosin mutant unc-15(e73) animals after spaceflight. We conclude that the mutant with abnormal muscle responded to microgravity by increasing the total amount of muscle protein in order to compensate for the loss of muscle function
- …