11 research outputs found

    Measurement of the total antioxidant response using a novel automated method in subjects with nonalcoholic steatohepatitis

    Get PDF
    BACKGROUND: Oxidative stress, an increase in oxidants and/or a decrease in antioxidant capacity, is one of the potential biochemical mechanisms involved in the pathogenesis of nonalcoholic steatohepatitis. We aimed to investigate the total antioxidant response using a novel automated method in nonalcoholic steatohepatitis subjects. As a reciprocal measure, we also aimed to determine total peroxide level in the same plasma samples. METHODS: Twenty-two subjects with biopsy proven nonalcoholic steatohepatitis and 22 healthy controls were enrolled. Total antioxidant response and total peroxide level measurements were done in all participants. The ratio percentage of total peroxide level to total antioxidant response was regarded as oxidative stress index. RESULTS: Total antioxidant response of subjects with nonalcoholic steatohepatitis was significantly lower than controls (p < 0.05), while mean total peroxide level and mean oxidative stress index were higher (all p < 0.05). In subjects with nonalcoholic steatohepatitis, fibrosis score was significantly correlated with total peroxide level, total antioxidant response and oxidative stress index (p < 0.05, r = 0.607; p < 0.05, r = -0.506; p < 0.05, r = 0.728, respectively). However, no correlation was observed between necroimflamatory grade and those oxidative status parameters (all p > 0.05). CONCLUSION: Nonalcoholic steatohepatitis is associated with increased oxidant capacity, especially in the presence of liver fibrosis. The novel automated assay is a reliable and easily applicable method for total plasma antioxidant response measurement in nonalcoholic steatohepatitis

    Magnetic nanodots from atomic Fe: Can it be done?

    No full text
    Laser focusing of Fe atoms offers the possibility of creating separate magnetic structures on a scale of 10 nm with exact periodicity. This can be done by using the parabolic minima of the potential generated by a standing light wave as focusing lenses. To achieve the desired 10-nm resolution, we need to suppress chromatic and spherical aberrations, as well as prevent structure broadening caused by the divergence of the incoming beam. Chromatic aberrations are suppressed by the development of a supersonic Fe beam source with speed ratio S = 11 ± 1. This beam has an intensity of 3 × 10(15) atoms sr(−1) s(−1). The spherical aberrations of the standing light wave will be suppressed by aperturing with beam masks containing 100-nm slits at 744-nm intervals. The beam divergence can be reduced by application of laser cooling to reduce the transverse velocity. We have constructed a laser system capable of delivering over 500 mW of laser light at 372 nm, the wavelength of the (5)D(4) → (5)F(5) atomic transition of (56)Fe we intend to use for laser cooling. Application of polarization spectroscopy to a hollow cathode discharge results in a locking system holding the laser continuously within 2 MHz of the desired frequency

    Structure formation in atom lithography using geometric collimation

    Get PDF
    Atom lithography uses standing wave light fields as arrays of lenses to focus neutral atom beams into line patterns on a substrate. Laser cooled atom beams are commonly used, but an atom beam source with a small opening placed at a large distance from a substrate creates atom beams which are locally geometrically collimated on the substrate. These beams have local offset angles with respect to the substrate. We show that this affects the height, width, shape, and position of the created structures. We find that simulated effects are partially obscured in experiments by substrate-dependent diffusion of atoms, while scattering and interference just above the substrate limit the quality of the standing wave lens. We find that in atom lithography without laser cooling the atom beam source geometry is imaged onto the substrate by the standing wave lens. We therefore propose using structured atom beam sources to image more complex patterns on subwavelength scales in a massively parallel way. © The Author(s) 2011
    corecore