57 research outputs found
Comparison of Autonomic Control of Blood Pressure During Standing and Artificial Gravity Induced via Short-Arm Human Centrifuge
Autonomic control of blood pressure is essential toward maintenance of cerebral perfusion during standing, failure of which could lead to fainting. Long-term exposure to microgravity deteriorates autonomic control of blood pressure. Consequently, astronauts experience orthostatic intolerance on their return to gravitational environment. Ground-based studies suggest sporadic training in artificial hypergravity can mitigate spaceflight deconditioning. In this regard, short-arm human centrifuge (SAHC), capable of creating artificial hypergravity of different g-loads, provides an auspicious training tool. Here, we compare autonomic control of blood pressure during centrifugation creating 1-g and 2-g at feet with standing in natural gravity. Continuous blood pressure was acquired simultaneously from 13 healthy participants during supine baseline, standing, supine recovery, centrifugation of 1-g, and 2-g, from which heart rate (RR) and systolic blood pressure (SBP) were derived. The autonomic blood pressure regulation was assessed via spectral analysis of RR and SBP, spontaneous baroreflex sensitivity, and non-linear heart rate and blood pressure causality (RRâSBP). While majority of these blood pressure regulatory indices were significantly different (p < 0.05) during standing and 2-g centrifugation compared to baseline, no change (p > 0.05) was observed in the same indices during 2-g centrifugation compared to standing. The findings of the study highlight the capability of artificial gravity (2-g at feet) created via SAHC toward evoking blood pressure regulatory controls analogous to standing, therefore, a potential utility toward mitigating deleterious effects of microgravity on cardiovascular performance and minimizing post-flight orthostatic intolerance in astronauts
A Hidden Markov Model for Seismocardiography
This is the author accepted manuscript. The final version is available from Institute of Electrical and Electronics Engineers (IEEE) via the DOI in this record.We propose a hidden Markov model approach for processing seismocardiograms. The seismocardiogram morphology is learned using the expectation-maximization algorithm, and the state of the heart at a given time instant is estimated by the Viterbi algorithm. From the obtained Viterbi sequence, it is then straightforward to estimate instantaneous heart rate, heart rate variability measures, and cardiac time intervals (the latter requiring a small number of manual annotations). As is shown in the conducted experimental study, the presented algorithm outperforms the state-of-the-art in seismocardiogram-based heart rate and heart rate variability estimation. Moreover, the isovolumic contraction time and the left ventricular ejection time are estimated with mean absolute errors of about 5 [ms] and 9 [ms], respectively. The proposed algorithm can be applied to any set of inertial sensors; does not require access to any additional sensor modalities; does not make any assumptions on the seismocardiogram morphology; and explicitly models sensor noise and beat-to-beat variations (both in amplitude and temporal scaling) in the seismocardiogram morphology. As such, it is well suited for low-cost implementations using off-the-shelf inertial sensors and targeting, e.g., at-home medical services
Non-linear Heart Rate and Blood Pressure Interaction in Response to Lower-Body Negative Pressure
Early detection of hemorrhage remains an open problem. In this regard, blood pressure has been an ineffective measure of blood loss due to numerous compensatory mechanisms sustaining arterial blood pressure homeostasis. Here, we investigate the feasibility of causality detection in the heart rate and blood pressure interaction, a closed-loop control system, for early detection of hemorrhage. The hemorrhage was simulated via graded lower-body negative pressure (LBNP) from 0 to -40 mmHg. The research hypothesis was that a significant elevation of causal control in the direction of blood pressure to heart rate (i.e., baroreflex response) is an early indicator of central hypovolemia. Five minutes of continuous blood pressure and electrocardiogram (ECG) signals were acquired simultaneously from young, healthy participants (27 ± 1 years, N = 27) during each LBNP stage, from which heart rate (represented by RR interval), systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) were derived. The heart rate and blood pressure causal interaction (RR SBP and RR MAP) was studied during the last 3 min of each LBNP stage. At supine rest, the non-baroreflex arm (RR SBP and RR MAP) showed a significantly (p \u3c 0.001) higher causal drive toward blood pressure regulation compared to the baroreflex arm (SBP RR and MAP RR). In response to moderate category hemorrhage (-30 mmHg LBNP), no change was observed in the traditional marker of blood loss i.e., pulse pressure (p = 0.10) along with the RR SBP (p = 0.76), RR MAP (p = 0.60), and SBP RR (p = 0.07) causality compared to the resting stage. Contrarily, a significant elevation in the MAP RR (p = 0.004) causality was observed. In accordance with our hypothesis, the outcomes of the research underscored the potential of compensatory baroreflex arm (MAP RR) of the heart rate and blood pressure interaction toward differentiating a simulated moderate category hemorrhage from the resting stage. Therefore, monitoring baroreflex causality can have a clinical utility in making triage decisions to impede hemorrhage progression
Effect of Aging on Muscle-Pump Baroreflex of Individual Leg Muscles During Standing
Activation of leg muscles is an important component in the regulation of blood pressure during standing, failure of which could result in syncope and falls. Our previous work demonstrated baroreflex mediated activation of leg muscles (muscle-pump baroreflex) as an important factor in the regulation of blood pressure during standing; however, the effect of aging on the muscle-pump baroreflex of individual leg muscles during standing remains to be understood. Here, the interaction between systolic blood pressure (SBP) and the activation of lateral gastrocnemius (LG), medial gastrocnemius (MG), tibialis anterior (TA), and soleus (SOL) muscles during standing was quantified. Beat-to-beat heart period (RR interval), SBP, electromyography impulse (EMGimp) were derived from continuously acquired electrocardiography, finger blood pressure, and calf-electromyography, respectively. The cardiac baroreflex (SBPâRR) causality (0.88 ± 0.08 vs. 0.94 ± 0.03, p = 0.01), percent time with significant coherence (%SC: 50.95 ± 23.31 vs. 76.75 ± 16.91, p = 0.001), and gain (4.39 ± 4.38 vs. 13.05 ± 8.11, p < 0.001) was lower in older (69 ± 4 years) compared to young (26 ± 2 years) persons. Muscle-pump baroreflex (SBPâEMGimp) causality of LG (0.81 ± 0.08 vs. 0.88 ± 0.05, p = 0.01) and SOL (0.79 ± 0.11 vs. 0.88 ± 0.04, p = 0.01) muscles was lower in older compared to young persons. %SC was lower for all muscles in the older group (LG, p < 0.001; MG, p = 0.01; TA, p = 0.01; and SOL, p < 0.001) compared to young. The study outcomes highlighted impairment in muscle-pump baroreflex with age in addition to cardiac baroreflex. The findings of the study can assist in the development of an effective system for monitoring orthostatic tolerance via cardiac and muscle-pump baroreflexes to mitigate syncope and falls
Cardio-postural Interactions and Muscle-pump Baroreflex Are Severely Impacted by 60-day Bedrest Immobilization
To understand fundamental mechanisms associated with post-flight orthostatic intolerance we investigated the interaction between the cardiovascular and postural functions before and after 60 days of head down bedrest (HDBR). Twenty healthy young males (35.0 ± 1.7 years) were subjected to 60-day HDBR at 6Ë to simulate spaceflight-induced fluid shifts. A supine-to-stand (STS) test was conducted to evaluate cardio-postural control before and after (R) HDBR while an assessment of cardiovascular function was performed during HDBR. Beat-to-beat heart period, systolic blood pressure, and electromyography impulses were derived for wavelet transform coherence and causality analyses of the cardio-postural control and used to assess changes in the muscle-pump baroreflex. During quiet stand of the STS test, compared to baseline, heart rate was 50% higher on the day of exit from bedrest (R0) and 20% higher eight days later (R8). There was a 50% increase in deoxygenated hemoglobin on R0 and R8. Leg muscle activity reduced, and postural sway increased after HDBR. Causality of the muscle-pump baroreflex was reduced on R0 (0.73 ± 0.2) compared to baseline (0.87 ± 0.2) with complete recovery by R8. The muscle-pump baroreflex also had decreased gain and fraction time active following HDBR. Overall, our data show a significantly impaired muscle-pump baroreflex following bedrest
Significant Role of the Cardiopostural Interaction in Blood Pressure Regulation During Standing
Cardiovascular and postural control systems have been studied independently despite the increasing evidence showing the importance of cardio-postural interaction in blood pressure regulation. In this study, we aimed to assess the role of cardio-postural interaction in relation to cardiac baroreflex in blood pressure regulation under orthostatic stress before and after mild exercise. Physiological variables representing cardiovascular control (heart rate and systolic blood pressure), lower limb muscle activation (electromyography), and postural sway (center of pressure derived from force and moment data during sway) were measured from 17 healthy participants (25±2 years; 8 females) during a sit-to stand test before and after sub-maximal exercise. The cardio-postural control (characterized by baroreflex-mediated muscle-pump effect in response to blood pressure changes, i.e., muscle-pump baroreflex) was assessed using wavelet transform coherence and causality analyses in relation to the baroreflex control of heart rate. Significant cardio-postural blood pressure control was evident counting for almost half of the interaction time with blood pressure changes that observed in the cardiac baroreflex (36.6-72.5% pre-exercise and 34.7-53.9% post-exercise). Thus, cardio-postural input to blood pressure regulation should be considered when investigating orthostatic intolerance. A reduction of both cardiac and muscle-pump baroreflexes in blood pressure regulation was observed post-exercise and was likely due to the absence of excessive venous pooling and a less stressed system after mild exercise. With further studies using more effective protocols evoking venous pooling and muscle-pump activity, the cardio-postural interaction could improve our understanding of the autonomic control system and ultimately lead to a more accurate diagnosis of cardio-postural dysfunctions
Role of deep levels and interface states in the capacitance characteristics of allâsputtered CuInSe2/CdS solar cell heterojunctions
Allâsputtered CuInSe2/CdS solar cellheterojunctions have been analyzed by means of capacitanceâfrequency (CâF) and capacitanceâbias voltage (CâV) measurements. Depending on the CuInSe2 layer composition, two kinds of heterojunctions were analyzed: type 1 heterojunctions (based on stoichiometric or slightly Inârich CuInSe2 layers) and type 2 heterojunctions (based on Cuârich CuInSe2 layers). In type 1 heterojunctions, a 80âmeV donor level has been found. Densities of interface states in the range 101 0â101 1 cm2âeVâ 1 (type 1) and in the range 101 2â101 3 cmâ 2âeVâ 1 (type 2) have been deduced. On the other hand, doping concentrations of 1.6Ă101 6 cmâ 3 for stoichiometric CuInSe2 (type 1 heterojunction) and 8Ă101 7 cmâ 3 for the CdS (type 2 heterojunction) have been deduced from CâVmeasurements
Bladder and upper urinary tract cancers as first and second primary cancers
Background Previous population-based studies on second primary cancers (SPCs) in urothelial cancers have focused on known risk factors in bladder cancer patients without data on other urothelial sites of the renal pelvis or ureter. Aims To estimate sex-specific risks for any SPCs after urothelial cancers, and in reverse order, for urothelial cancers as SPCs after any cancer. Such two-way analysis may help interpret the results. Methods We employed standardized incidence ratios (SIRs) to estimate bidirectional relative risks of subsequent cancer associated with urothelial cancers. Patient data were obtained from the Swedish Cancer Registry from years 1990 through 2015. Results We identified 46 234 urinary bladder cancers (75% male), 940 ureteral cancers (60% male), and 2410 renal pelvic cancers (57% male). After male bladder cancer, SIRs significantly increased for 9 SPCs, most for ureteral (SIR 41.9) and renal pelvic (17.2) cancers. In the reversed order (bladder cancer as SPC), 10 individual FPCs were associated with an increased risk; highest associations were noted after renal pelvic (21.0) and ureteral (20.9) cancers. After female bladder cancer, SIRs of four SPCs were significantly increased, most for ureteral (87.8) and pelvic (35.7) cancers. Female bladder, ureteral, and pelvic cancers associated are with endometrial cancer. Conclusions The risks of recurrent urothelial cancers were very high, and, at most sites, female risks were twice over the male risks. Risks persisted often to follow-up periods of >5 years, motivating an extended patient follow-up. Lynch syndrome-related cancers were associated with particularly female urothelial cancers, calling for clinical vigilance.Peer reviewe
- âŠ