72 research outputs found

    Calcium Phosphate/Clay Nanotube Bone Cement with Enhanced Mechanical Properties and Sustained Drug Release

    Get PDF
    Calcium phosphate cement (CPC) has limited use in bone repair due to their poor mechanical properties. Halloysite nanotubes (HNTs) are clay tubes with an aluminosilicate composition. The physicochemical properties, cytocompatibility, and cellular response to the CPC/HNT composites were assayed. Compression strength, FTIR analysis, protein synthesis, and mineralization were assessed. The cumulative data show that composites of tricalcium phosphate (TCP), anhydrous calcium diphosphate (DCPA) as the solid phase agent, and 10% chitosan lactate solution as the setting liquid produced cement with sustained release properties without loss of material strength. The composite also showed enhanced material properties (adhesiveness, surface roughness, and increased strength). Cellular assays confirm its osteoconductive and osteoinductive nature. CPCs, loaded with gentamicin- and neomycin-doped HNTs, showed sustained antibacterial release and marked zone of growth inhibition. CPCs fabricated with drug-doped HNTs offer a means for inducing bone growth at the site of implantation while controlling infection. This treatment modality should hasten patient healing time and enhance restoration of function. The increase in materials properties suggests that this CPC may be clinically applied to repair injuries in load-bearing bones

    Microstructural and Compositional Relations of Granitoid Clasts in Lunar Breccias at the Micrometer to Sub-Micrometer Scale

    Get PDF
    Lunar granitoid lithologies have long been of interest for the information they provide on processes leading to silicic melt compositions on the Moon. The extraction of such melts over time affects the distribution and budget of incompatible materials (i.e., radiogenic heat producing elements and volatiles) of the lunar interior. We have recently shown that in addition to their high concentrations of incompatible lithophile elements, some granitoid clasts in lunar breccias have significant indigenous water contents in their alkali feldspars. This raises the importance of lunar granitoid materials in the expanding search for mineralogic/petrologic hosts of indigenous lunar water-related species. We are undertaking a detailed survey of the petrologic/mineralogical relations of granitoid clasts in lunar breccias to achieve a better understanding of the potential of these diverse assemblages as hosts for volatiles, and as candidates for additional isotope chronology studies. Our preliminary results reported here based on high-resolution field-emission SEM, EPMA and TEM studies uncover immense complexity in these materials at the micrometer to sub-micrometer scale that heretofore have not been fully documented

    Rb-Sr Isotopic Systematics of Alkalai-Rich Fragments in Yamato-74442 and Bhola

    Get PDF
    We have undertaken Rb.Sr isotopic studies on alkali-rich fragments in Bhola and Y-74442 to precisely deter-mine their crystallization ages and isotopic signatures of their precursor material(s)

    Calcium and Titanium Isotope Fractionation in CAIS: Tracers of Condensation and Inheritance in the Early Solar Protoplanetary Disk

    Get PDF
    The chemical and isotopic compositions of calcium-aluminum-rich inclusions (CAIs) can be used to understand the conditions present in the protoplantary disk where they formed. The isotopic compositions of these early-formed nebular materials are largely controlled by chemical volatility. The isotopic effects of evaporation/sublimation, which are well explained by both theory and experimental work, lead to enrichments of the heavy isotopes that are often exhibited by the moderately refractory elements Mg and Si. Less well understood are the isotopic effects of condensation, which limits our ability to determine whether a CAI is a primary condensate and/or retains any evidence of its primordial formation history

    SIMULTANEOUS STIMATION OF ASPIRIN AND OMEPRAZOLE (Y0SPRALA) IN BULK BY UV-SPECTROSCOPY

    Get PDF
    In India, there are roughly 30 million heart patients and two lakh surgeries are being performed every year. YOSPRALA-a new emerging drug approved by USFDA in September 2016 to treat Ischemic stroke, prophylaxis and gastric ulcer prophylaxis. The active ingredients present are Aspirin and Omeprazole.Hence ana attempt is made to develop a new analytical method for Simultaneous estimation of Aspirin and Omeprazole using methanol as solvent The Absorption maxima of Aspirin and Omeprazole was at 224nm and 251.8nm respectively. Linearity range for aspirin was 0.5-25µg/ml with regression co-efficient-099 and omeprazole was 1-8µg/ml with regression coefficient 0.992. The method was validated for precision and %RSD was less than 1.5% for both aspirin and omeprazole. The proposed method was statistically validated for standard deviation, relative standard deviation.coefficient of variance and the results were within the limits. Hence the above method was simple, cost effective, robust and can be used for routine analysis in in pharmaceutical preparations. Keywords: Yosprala, Aspirin and Omeprazole, UV spectroscopy

    Rb–Sr ISOTOPIC SYSTEMATICS OF ALKALI-RICH FRAGMENTS IN THE YAMATO–74442 LL–CHONDRITIC BRECCIA.

    Get PDF
    第3回極域科学シンポジウム/第35回南極隕石シンポジウム 11月30日(金) 国立国語研究所 2階講

    Rb-Sr Isotopic Systematics of Alkali-Rich Fragments in the Yamato-74442 LL-Chondritic Breccia

    Get PDF
    Alkali-rich igneous fragments were identified in the brecciated LL-chondrites, Kr henberg (LL5)], Bhola (LL3-6) and Yamato (Y)-74442 (LL4), and show characteristic fractionation patterns of alkaline elements. The K-Rb-Cs-rich fragments in Kr henberg, Bhola, and Y-74442 are very similar in mineralogy and petrography (olivine + pyroxene + glass), suggesting that they could have come from related precursor materials. We have undertaken Rb-Sr isotopic studies on alkali-rich fragments in Y-74442 to precisely determine their crystallization ages and the isotopic signatures of their precursor material(s)

    K-Ca Dating of Alkali-Rich Fragments in the Y-74442 and Bhola LL-Chondritic Breccias

    Get PDF
    Alkali-rich igneous fragments in the brecciated LL-chondrites, Krahenberg (LL5) [1], Bhola (LL3-6) [2], Siena (LL5) [3] and Yamato (Y)-74442 (LL4) [4-6], show characteristic fractionation patterns of alkali and alkaline elements [7]. The alkali-rich fragments in Krahenberg, Bhola and Y-74442 are very similar in mineralogy and petrography, suggesting that they could have come from related precursor materials [6]. Recently we reported Rb-Sr isotopic systematics of alkali-rich igneous rock fragments in Y-74442: nine fragments from Y-74442 yield the Rb-Sr age of 4429 plus or minus 54 Ma (2 sigma) for lambda(Rb-87) = 0.01402 Ga(exp -1) [8] with the initial ratio of Sr-87/Sr-86 = 0.7144 plus or minus 0.0094 (2 sigma) [9]. The Rb-Sr age of the alkali-rich fragments of Y-74442 is younger than the primary Rb-Sr age of 4541 plus or minus 14 Ma for LL-chondrite whole-rock samples [10], implying that they formed after accumulation of LL-chondrite parental bodies, although enrichment may have happened earlier. Marshall and DePaolo [11,12] demonstrated that the K-40 - Ca-40 decay system could be an important chronometer as well as a useful radiogenic tracer for studies of terrestrial rocks. Shih et al. [13,14] and more recently Simon et al. [15] determined K-Ca ages of lunar granitic rocks, and showed the application of the K-Ca chronometer for K-rich planetary materials. Since alkali-rich fragments in the LL-chondritic breccias are highly enriched in K, we can expect enhancements of radiogenic Ca-40. Here, we report preliminary results of K-Ca isotopic systematics of alkali-rich fragments in the LL-chondritic breccias, Y-74442 and Bhola

    Early Solar System Alkali Fractionation Events Recorded by K-Ca Isotopes in the Yamato-74442 LL-Chondritic Breccia

    Get PDF
    Radiogenic ingrowth of Ca-40 due to decay of K-40 occurred early in the solar system history causing the Ca-40 abundance to vary within different early-former reservoirs. Marshall and DePaolo ] demonstrated that the K-40/Ca-40 decay system could be a useful radiogenic tracer for studies of terrestrial rocks. Shih et al. [3,4] determined 40K/40Ca ages of lunar granitic rock fragments and discussed the chemical characteristics of their source materials. Recently, Yokoyama et al. [5] showed the application of the K-40/Ca-40 chronometer for high K/Ca materials in ordinary chondrites (OCs). High-precision calcium isotopic data are needed to constrain mixing processes among early solar system materials and the time of planetesimal formation. To better constrain the solar system calcium isotopic compositions among astromaterials, we have determined the calcium isotopic compositions of OCs and an angrite. We further estimated a source K/Ca ratio for alkali-rich fragments in a chondritic breccia using the estimated solar system initial Ca-40/Ca-44
    corecore