1,135 research outputs found

    Crystal Symmetry, Electron-Phonon Coupling, and Superconducting Tendencies in Li2_2Pd3_3B and Li2_2Pt3_3B

    Full text link
    After theoretical determination of the internal structural coordinates in Li2_2Pd3_3B, we calculate and analyze its electronic structure and obtain the frequencies of the two AgA_g phonons (40.6 meV for nearly pure Li mode, 13.0 meV for the strongly mixed Pd-Li mode). Pd can be ascribed a 4d104d^{10} configuration, but strong 4d character remains up to the Fermi level. Small regions of flat bands occur at -70 meV at both the Γ\Gamma and X points. Comparison of the Fermi level density of states to the linear specific heat coefficient gives a dynamic mass enhancement of λ\lambda = 0.75. Rough Fermi surface averages of the deformation potentials DD of individual Pd and Li displacements are obtained. While is small, ~ 1.15 eV/\AA is sizable, and a plausible case exists for its superconductivity at 8 K being driven primarily by coupling to Pd vibrations. The larger d bandwidth in Li2_2Pt3_3B leads to important differences in the bands near the Fermi surface. The effect on the band structure of spin-orbit coupling plus lack of inversion is striking, and is much larger in the Pt compound.Comment: 8 pages and 8embedded figures, to be appeared in PR

    Hall effect of quasi-hole gas in organic single-crystal transistors

    Full text link
    Hall effect is detected in organic field-effect transistors, using appropriately shaped rubrene (C42H28) single crystals. It turned out that inverse Hall coefficient, having a positive sign, is close to the amount of electric-field induced charge upon the hole accumulation. The presence of the normal Hall effect means that the electromagnetic character of the surface charge is not of hopping carriers but resembles that of a two-dimensional hole-gas system

    Discovery of Li2(Pd,Pt)3B superconductors

    Full text link
    Critical temperature Tc of the Li2(Pd1-xPtx)3B was reported to be 7-8K for x=0 and 2.2-2.8K for x=1. In this article we present our preliminary results on behavior of magnetization-temperature curves with starting composition of Pd-B precursor, y-Li concentration in LiyPd3B and post-annealing of the Pd-end compound. Results suggest that to maximize Tc ratio Pd:B should be close to 3:1, while y-Li has to be optimum. The lowest Tc for LiyPd3B was 4.4-4.6K, while post-annealings at 560 deg. C allowed enhancement of Tc up to 8.2-8.4K. Compositions Li2Z3B with Z=Ni, Ru, Rh, Re, Ag are not superconducting down to 1.8K. Exception is composition with Re showing superconductivity due to Re3B compound. All samples were prepared by arc melting.Comment: 6 pages, 5 figs. presented at M2S, 200

    Effect of Pt doping on the critical temperature and upper critical field in YNi2-xPtxB2C (x=0-0.2)

    Full text link
    We investigate the evolution of superconducting properties by doping non-magnetic impurity in single crystals of YNi2-xPtxB2C (x=0-0.2). With increasing Pt doping the critical temperature (Tc) monotonically decreases from 15.85K and saturates to a value ~13K for x>0.14. However, unlike conventional s-wave superconductors, the upper critical field (HC2) along both crystallographic directions a and c decreases with increasing Pt doping. Specific heat measurements show that the density of states (N(EF)) at the Fermi level (EF) and the Debye temperatures (Theta_D) in this series remains constant within the error bars of our measurement. We explain our results based on the increase in intraband scattering in the multiband superconductor YNi2B2C.Comment: ps file with figure

    Thermo-magnetic history effects in the vortex state of YNi_2B_2C superconductor

    Get PDF
    The nature of five-quadrant magnetic isotherms for is different from that for in a single crystal of YNi2B2C, pointing towards an anisotropic behaviour of the flux line lattice (FLL). For, a well defined peak effect (PE) and second magnetization peak (SMP) can be observed and the loop is open prior to the PE. However, for, the loop is closed and one can observe only the PE. We have investigated the history dependence of magnetization hysteresis data for by recording minor hysteresis loops. The observed history dependence in across different anomalous regions are rationalized on the basis of su-perheating/supercooling of the vortex matter across the first-order-like phase transition and possible additional effects due to annealing of the disordered vortex bundles to the underlying equilibrium state.Comment: 4 pages, 4 figure

    Superconductivity in metal rich Li-Pd-B ternary Boride

    Full text link
    8K superconductivity was observed in the metal rich Li-Pd-B ternary system. Structural, microstructural, electrical and magnetic investigations for various compositions proved that Li2Pd3B compound, which has a cubic structure composed of distorted Pd6B octahedrons, is responsible for the superconductivity. This is the first observation of superconductivity in metal rich ternary borides containing alkaline metal and Pd as a late transition metal. The compound prepared by arc melting has high density, is stable in the air and has an upper critical field, Hc2(0), of 6T.Comment: 4 pages, 5 figur

    Observation of isosceles triangular electronic structure around excess iron atoms in Fe1+δ_{1+\delta}Te

    Full text link
    We present scanning tunneling microscopy and spectroscopy studies around an individual excess Fe atom, working as a local perturbation, in the parent material of the iron-chalcogenide superconductor Fe1+δ_{1+\delta}Te. Spectroscopic imaging reveals a novel isosceles triangular electronic structure around the excess Fe atoms. Its spatial symmetry reects the underlying bicollinear antiferromagnetic spin state and the structural monoclinic symmetry. These findings provide important clues to understand the role of the excess Fe atoms, which complicate the understanding of the phenomena occurring in iron-chalcogenide materials.Comment: 6 pages, 5 figures, to be published in Phys. Rev.

    Field-induced charge transport at the surface of pentacene single crystals: a method to study charge dynamics of 2D electron systems in organic crystals

    Full text link
    A method has been developed to inject mobile charges at the surface of organic molecular crystals, and the DC transport of field-induced holes has been measured at the surface of pentacene single crystals. To minimize damage to the soft and fragile surface, the crystals are attached to a pre-fabricated substrate which incorporates a gate dielectric (SiO_2) and four probe pads. The surface mobility of the pentacene crystals ranges from 0.1 to 0.5 cm^2/Vs and is nearly temperature-independent above ~150 K, while it becomes thermally activated at lower temperatures when the induced charges become localized. Ruling out the influence of electric contacts and crystal grain boundaries, the results contribute to the microscopic understanding of trapping and detrapping mechanisms in organic molecular crystals.Comment: 14 pages, 4 figures. Submitted to J. Appl. Phy
    corecore