436 research outputs found
Mortality by occupation and industry among Japanese men in the 2015 fiscal year
BACKGROUND: Although previous studies have underscored some unique inequalities in occupational mortality in Japan, many of these trends have been dramatically altered during recent decades. We analyzed mortality data by occupation and industry in Japan, to determine whether differences remained by the mid-2010s for men in working-age population. METHODS: We calculated age-standardized all-cause and cause-specific mortality, according to occupation and industry, among men aged 25-64 years in the 2015 fiscal year (1 April 2015 to 31 March 2016). Occupational and industry-specific categories were defined using the Japan Standard Occupational Classification and Japan Standard Industrial Classification, respectively. Age-standardized mortality rates were computed using 5-year age intervals. Mortality rate ratios adjusted for age and 95% confidence intervals (CIs) were estimated using Poisson regression. Cause-specific deaths were classified into four broad groups (cancers [C00-D48], cardiovascular diseases [I00-I99], external causes [V01-Y98], and all other diseases) based on the International Statistical Classification of Diseases 10th Revision (ICD-10). RESULTS: Clear mortality differences were identified by both occupation and industry among Japanese males. All-cause mortality ranged from 53.7 (clerical workers) to 240.3 (service workers) per 100,000 population for occupation and from 54.3 (workers in education) to 1169.4 (workers in mining) for industry. In relative terms, service workers and agriculture, forestry, and fishing workers had 2.89 and 2.50 times higher all-cause mortality than sales workers. Administrative and managerial workers displayed higher mortality risk (1.86; 95% CI 1.76-1.97) than sales workers. Similar patterns of broad cause-specific mortality inequality were identified in terms of both absolute and relative measures, and all broad
Street Food in Malaysia: What Are the Sodium Levels?
Street food is a major source of food in middle- and low-income countries as it is highly accessible and inexpensive. However, it is usually perceived as unhealthy due to the high levels of sodium, sugar, and fat content. However, there is little analytical data on the sodium levels in the street foods of Malaysia. This study started with a survey to determine the most frequently available street foods in every state in Malaysia, followed by food sampling and the analysis of sodium (reported mg/100 g sample). Street food in the snack category contained the highest amount of sodium (433 mg), followed by main meals (336.5 mg) and desserts (168 mg). Approximately 30% of the local street food in this study was deep-fried. Snacks from processed food (8%) contained high sodium content (500–815 mg). Fried noodles and noodle soup contained the highest amount of sodium (>2000 mg sodium) based on per serving. Most main dishes that use a variety of sauces contained high amounts of sodium. These findings were recorded in the Malaysian Food Composition Database. Moreover, this study could raise awareness and serve as baseline data for future interventions on the sodium content in the street foods of Malaysia
Activated macrophages promote Wnt signalling through tumour necrosis factor-α in gastric tumour cells
The activation of Wnt/β-catenin signalling has an important function in gastrointestinal tumorigenesis. It has been suggested that the promotion of Wnt/β-catenin activity beyond the threshold is important for carcinogenesis. We herein investigated the role of macrophages in the promotion of Wnt/β-catenin activity in gastric tumorigenesis. We found β-catenin nuclear accumulation in macrophage-infiltrated dysplastic mucosa of the K19-Wnt1 mouse stomach. Moreover, macrophage depletion in ApcΔ716 mice resulted in the suppression of intestinal tumorigenesis. These results suggested the role of macrophages in the activation of Wnt/β-catenin signalling, which thus leads to tumour development. Importantly, the conditioned medium of activated macrophages promoted Wnt/β-catenin signalling in gastric cancer cells, which was suppressed by the inhibition of tumour necrosis factor (TNF)-α. Furthermore, treatment with TNF-α induced glycogen synthase kinase 3β (GSK3β) phosphorylation, which resulted in the stabilization of β-catenin. We also found that Helicobacter infection in the K19-Wnt1 mouse stomach caused mucosal macrophage infiltration and nuclear β-catenin accumulation. These results suggest that macrophage-derived TNF-α promotes Wnt/β-catenin signalling through inhibition of GSK3β, which may contribute to tumour development in the gastric mucosa
Time-of-Flight Three Dimensional Neutron Diffraction in Transmission Mode for Mapping Crystal Grain Structures
The physical properties of polycrystalline materials depend on their microstructure, which is the nano-to centimeter scale arrangement of phases and defects in their interior. Such microstructure depends on the shape, crystallographic phase and orientation, and interfacing of the grains constituting the material. This article presents a new non-destructive 3D technique to study centimeter-sized bulk samples with a spatial resolution of hundred micrometers: time-of-flight three-dimensional neutron diffraction (ToF 3DND). Compared to existing analogous X-ray diffraction techniques, ToF 3DND enables studies of samples that can be both larger in size and made of heavier elements. Moreover, ToF 3DND facilitates the use of complicated sample environments. The basic ToF 3DND setup, utilizing an imaging detector with high spatial and temporal resolution, can easily be implemented at a time-of-flight neutron beamline. The technique was developed and tested with data collected at the Materials and Life Science Experimental Facility of the Japan Proton Accelerator Complex (J-PARC) for an iron sample. We successfully reconstructed the shape of 108 grains and developed an indexing procedure. The reconstruction algorithms have been validated by reconstructing two stacked Co-Ni-Ga single crystals, and by comparison with a grain map obtained by post-mortem electron backscatter diffraction (EBSD)
Tolfenamic Acid Induces Apoptosis and Growth Inhibition in Head and Neck Cancer: Involvement of NAG-1 Expression
Nonsteroidal anti-inflammatory drug-activated gene-1 (NAG-1) is induced by nonsteroidal anti-inflammatory drugs and possesses proapoptotic and antitumorigenic activities. Although tolfenamic acid (TA) induces apoptosis in head and neck cancer cells, the relationship between NAG-1 and TA has not been determined. This study investigated the induction of apoptosis in head and neck cancer cells treated by TA and the role of NAG-1 expression in this induction. TA reduced head and neck cancer cell viability in a dose-dependent manner and induced apoptosis. The induced apoptosis was coincident with the expression of NAG-1. Overexpression of NAG-1 enhanced the apoptotic effect of TA, whereas suppression of NAG-1 expression by small interfering RNA attenuated TA-induced apoptosis. TA significantly inhibited tumor formation as assessed by xenograft models, and this result accompanied the induction of apoptotic cells and NAG-1 expression in tumor tissue samples. Taken together, these results demonstrate that TA induces apoptosis via NAG-1 expression in head and neck squamous cell carcinoma, providing an additional mechanistic explanation for the apoptotic activity of TA
- …