2,202 research outputs found

    Dispersionless Toda hierarchy and two-dimensional string theory

    Full text link
    The dispersionless Toda hierarchy turns out to lie in the heart of a recently proposed Landau-Ginzburg formulation of two-dimensional string theory at self-dual compactification radius. The dynamics of massless tachyons with discrete momenta is shown to be encoded into the structure of a special solution of this integrable hierarchy. This solution is obtained by solving a Riemann-Hilbert problem. Equivalence to the tachyon dynamics is proven by deriving recursion relations of tachyon correlation functions in the machinery of the dispersionless Toda hierarchy. Fundamental ingredients of the Landau-Ginzburg formulation, such as Landau-Ginzburg potentials and tachyon Landau-Ginzburg fields, are translated into the language of the Lax formalism. Furthermore, a wedge algebra is pointed out to exist behind the Riemann-Hilbert problem, and speculations on its possible role as generators of ``extra'' states and fields are presented.Comment: LaTeX 21 pages, KUCP-0067 (typos are corrected and a brief note is added

    A note on fermionic flows of the N=(1|1) supersymmetric Toda lattice hierarchy

    Full text link
    We extend the Sato equations of the N=(1|1) supersymmetric Toda lattice hierarchy by two new infinite series of fermionic flows and demonstrate that the algebra of the flows of the extended hierarchy is the Borel subalgebra of the N=(2|2) loop superalgebra.Comment: 4 pages LaTe

    Explicit solutions of the classical Calogero & Sutherland systems for any root system

    Get PDF
    Explicit solutions of the classical Calogero (rational with/without harmonic confining potential) and Sutherland (trigonometric potential) systems is obtained by diagonalisation of certain matrices of simple time evolution. The method works for Calogero & Sutherland systems based on any root system. It generalises the well-known results by Olshanetsky and Perelomov for the A type root systems. Explicit solutions of the (rational and trigonometric) higher Hamiltonian flows of the integrable hierarchy can be readily obtained in a similar way for those based on the classical root systems.Comment: 18 pages, LaTeX, no figur

    Integrable hierarchy underlying topological Landau-Ginzburg models of D-type

    Full text link
    A universal integrable hierarchy underlying topological Landau-Ginzburg models of D-tye is presented. Like the dispersionless Toda hierarchy, the new hierarchy has two distinct (``positive" and ``negative") set of flows. Special solutions corresponding to topological Landau-Ginzburg models of D-type are characterized by a Riemann-Hilbert problem, which can be converted into a generalized hodograph transformation. This construction gives an embedding of the finite dimensional small phase space of these models into the full space of flows of this hierarchy. One of flat coordinates in the small phase space turns out to be identical to the first ``negative" time variable of the hierarchy, whereas the others belong to the ``positive" flows.Comment: 14 pages, Kyoto University KUCP-0061/9

    Toda Tau Functions with Quantum Torus Symmetries

    Get PDF
    The quantum torus algebra plays an important role in a special class of solutions of the Toda hierarchy. Typical examples are the solutions related to the melting crystal model of topological strings and 5D SUSY gauge theories. The quantum torus algebra is realized by a 2D complex free fermion system that underlies the Toda hierarchy, and exhibits mysterious “shift symmetries”. This article is based on collaboration with Toshio Nakatsu

    An hbar-expansion of the Toda hierarchy: a recursive construction of solutions

    Full text link
    A construction of general solutions of the \hbar-dependent Toda hierarchy is presented. The construction is based on a Riemann-Hilbert problem for the pairs (L,M) and (\bar L,\bar M) of Lax and Orlov-Schulman operators. This Riemann-Hilbert problem is translated to the language of the dressing operators W and \bar W. The dressing operators are set in an exponential form as W = e^{X/\hbar} and \bar W = e^{\phi/\hbar}e^{\bar X/\hbar}, and the auxiliary operators X,\bar X and the function \phi are assumed to have \hbar-expansions X = X_0 + \hbar X_1 + ..., \bar X = \bar X_0 + \hbar\bar X_1 + ... and \phi = \phi_0 + \hbar\phi_1 + .... The coefficients of these expansions turn out to satisfy a set of recursion relations. X,\bar X and \phi are recursively determined by these relations. Moreover, the associated wave functions are shown to have the WKB form \Psi = e^{S/\hbar} and \bar\Psi = e^{\bar S/\hbar}, which leads to an \hbar-expansion of the logarithm of the tau function.Comment: 37 pages, no figures. arXiv admin note: substantial text overlap with arXiv:0912.486

    Kernel Formula Approach to the Universal Whitham Hierarchy

    Full text link
    We derive the dispersionless Hirota equations of the universal Whitham hierarchy from the kernel formula approach proposed by Carroll and Kodama. Besides, we also verify the associativity equations in this hierarchy from the dispersionless Hirota equations and give a realization of the associative algebra with structure constants expressed in terms of the residue formulas.Comment: 18 page
    corecore