4 research outputs found
Temperature effects on the strengh properties of microbially stabilized residual soil
Microbially Induced Calcite Precipitation (MICP) is a rather new technology that has shown greater potential in geotechnical engineering applications. The technique utilizes the concept of microbial involvements in carbonate precipitation within the soil matrix that lead to the improvement in strength and stiffness of the soil. This paper evaluated the effects of temperature variations on the performance of microbial calcite precipitations in residual soil. The soil specimens were cured under different temperature conditions; that are atmospheric temperature, 40, 45 and 50° C. Shear strength, pH and amount of calcite precipitated were determined for each curing condition. A bacterial concentration of 1×105 cfu/ml and 0.5 M concentration of the cementation reagents were used for the study. The results indicated a general increase in strength with increase in curing temperature; which is an indication of temperature influence in bacterial activity. The results so far obtained also revealed that the higher the amount of calcite precipitated the more the strength improvement up to 48 hours treatment duration; after which increase in calcite content does not results in the increase in strength
Effect of reagents concentration on biocementation of tropical residual soil
This study explores the feasibility of Bacillus subtilis and optimum reagents concentration used in Microbial-Induced Calcite Precipitation (MICP) treatment of tropical residual soil. Experiment was conducted to investigate the effect of cementation reagents concentration toward MICP treatment. The performance of MICP treatment was assessed by measurement of the soil shear strength and calcite content. Based on the experimental results, it is discovered that the cementation reagent concentration has significantly affected on the performance of MICP treatment. The results suggested that the most preferable MICP treatment reagents concentration is 0.25M with the presence of Bacillus subtilis; using these treatment parameters, both UCS value and calcite content of treated soil had increased about 38% and 65.6% respectively. However, the reduction in UCS value was manifested for those samples treated at higher reagents concentration (0.35M); this phenomenon is attributed to the salinity of reagents where high salinity is not favourable to the bacteria growth and microbial activity; subsequently, this resulted in a consequential decrease in shear strength of the treated soil