118 research outputs found

    Geometric potential and transport in photonic topological crystals

    Full text link
    We report on the experimental realization of an optical analogue of a quantum geometric potential for light wave packets constrained on thin dielectric guiding layers fabricated in silica by the femtosecond laser writing technology. We further demonstrate the optical version of a topological crystal, with the observation of Bloch oscillations and Zener tunneling of purely geometric nature

    Two-dimensional solitons at interfaces between binary superlattices and homogeneous lattices

    Full text link
    We report on the experimental observation of two-dimensional surface solitons residing at the interface between a homogeneous square lattice and a superlattice that consists of alternating "deep" and "shallow" waveguides. By exciting single waveguides in the first row of the superlattice, we show that solitons centered on deep sites require much lower powers than their respective counterparts centered on shallow sites. Despite the fact that the average refractive index of the superlattice waveguides is equal to the refractive index of the homogeneous lattice, the interface results in clearly asymmetric output patterns.Comment: 16 pages, 5 figures, to appear in Physical Review

    Surface Gap Soliton Ground States for the Nonlinear Schr\"{o}dinger Equation

    Full text link
    We consider the nonlinear Schr\"{o}dinger equation (Δ+V(x))u=Γ(x)up1u(-\Delta +V(x))u = \Gamma(x) |u|^{p-1}u, xRnx\in \R^n with V(x)=V1(x)χ{x1>0}(x)+V2(x)χ{x1<0}(x)V(x) = V_1(x) \chi_{\{x_1>0\}}(x)+V_2(x) \chi_{\{x_1<0\}}(x) and Γ(x)=Γ1(x)χ{x1>0}(x)+Γ2(x)χ{x1<0}(x)\Gamma(x) = \Gamma_1(x) \chi_{\{x_1>0\}}(x)+\Gamma_2(x) \chi_{\{x_1<0\}}(x) and with V1,V2,Γ1,Γ2V_1, V_2, \Gamma_1, \Gamma_2 periodic in each coordinate direction. This problem describes the interface of two periodic media, e.g. photonic crystals. We study the existence of ground state H1H^1 solutions (surface gap soliton ground states) for 0<minσ(Δ+V)0<\min \sigma(-\Delta +V). Using a concentration compactness argument, we provide an abstract criterion for the existence based on ground state energies of each periodic problem (with VV1,ΓΓ1V\equiv V_1, \Gamma\equiv \Gamma_1 and VV2,ΓΓ2V\equiv V_2, \Gamma\equiv \Gamma_2) as well as a more practical criterion based on ground states themselves. Examples of interfaces satisfying these criteria are provided. In 1D it is shown that, surprisingly, the criteria can be reduced to conditions on the linear Bloch waves of the operators d2dx2+V1(x)-\tfrac{d^2}{dx^2} +V_1(x) and d2dx2+V2(x)-\tfrac{d^2}{dx^2} +V_2(x).Comment: definition of ground and bound states added, assumption (H2) weakened (sign changing nonlinearity is now allowed); 33 pages, 4 figure

    Topological dipole Floquet solitons

    Get PDF
    We theoretically introduce a type of topological dipole soliton propagating in a Floquet topological insulator based on a kagome array of helical waveguides. Such solitons bifurcate from two edge states belonging to different topological gaps and have bright envelopes of different symmetries: fundamental for one component, and dipole for the other. The formation of dipole solitons is enabled by unique spectral features of the kagome array which allow the simultaneous coexistence of two topological edge states from different gaps at the same boundary. Notably, these states have equal and nearly vanishing group velocities as well as the same sign of the effective dispersion coefficients. We derive envelope equations describing the components of dipole solitons and demonstrate in full continuous simulations that such states indeed can survive over hundreds of helix periods without any noticeable radiation into the bulk.Y.V.K. and S.K.I. acknowledge funding of this study by RFBR and DFG according to Research Project No. 18- 502-12080. A.S. acknowledges funding from the Deutsche Forschungsgemeinschaft (Grants No. BL 574/13-1, No. SZ 276/19-1, and No. SZ 276/20-1). Y.V.K. and L.T. acknowledge support from the Government of Spain (Severo Ochoa CEX2019-000910-S), Fundació Cellex, Fundació Mir-Puig, Generalitat de Catalunya (CERCA). V.V.K. acknowledges financial support from the Portuguese Foundation for Science and Technology (FCT) under Contract No. UIDB/00618/2020.Peer ReviewedPostprint (author's final draft

    Biphoton generation in quadratic waveguide arrays: A classical optical simulation

    Get PDF
    Quantum entanglement, the non-separability of a multipartite wave function, became essential in understanding the non-locality of quantum mechanics. In optics, this non-locality can be demonstrated on impressively large length scales, as photons travel with the speed of light and interact only weakly with their environment. With the discovery of spontaneous parametric down-conversion (SPDC) in nonlinear crystals, an efficient source for entangled photon pairs, so-called biphotons, became available. It has recently been shown that SPDC can also be implemented in nonlinear arrays of evanescently coupled waveguides which allows the generation and the investigation of correlated quantum walks of such biphotons in an integrated device. Here, we analytically and experimentally demonstrate that the biphoton degrees of freedom are entailed in an additional spatial dimension, therefore the SPDC and the subsequent quantum random walk in one-dimensional (1D) arrays can be simulated through classical optical beam propagation in a two-dimensional (2D) photonic lattice. Thereby, the output intensity images directly represent the biphoton correlations and exhibit a clear violation of a Bell-type inequality

    Nonlinearity-induced photonic topological insulator

    Get PDF
    The hallmark feature of topological insulators renders edge transport virtually impervious to scattering at defects and lattice disorder. In our work, we experimentally demonstrate a topological system, using a photonic platform, in which the very existence of the topological phase is brought about by nonlinearity. Whereas in the linear regime, the lattice structure remains topologically trivial, light beams launched above a certain power threshold drive the system into its transient topological regime, and thereby define a nonlinear unidirectional channel along its edge. Our work studies topological properties of matter in the nonlinear regime, and may pave the way towards compact devices that harness topological features in an on-demand fashion
    corecore