2,632 research outputs found
Low ML-Decoding Complexity, Large Coding Gain, Full-Rate, Full-Diversity STBCs for 2 X 2 and 4 X 2 MIMO Systems
This paper (Part of the content of this manuscript has been accepted for
presentation in IEEE Globecom 2008, to be held in New Orleans) deals with low
maximum likelihood (ML) decoding complexity, full-rate and full-diversity
space-time block codes (STBCs), which also offer large coding gain, for the 2
transmit antenna, 2 receive antenna () and the 4 transmit antenna, 2
receive antenna () MIMO systems. Presently, the best known STBC for
the system is the Golden code and that for the system is
the DjABBA code. Following the approach by Biglieri, Hong and Viterbo, a new
STBC is presented in this paper for the system. This code matches
the Golden code in performance and ML-decoding complexity for square QAM
constellations while it has lower ML-decoding complexity with the same
performance for non-rectangular QAM constellations. This code is also shown to
be \emph{information-lossless} and \emph{diversity-multiplexing gain} (DMG)
tradeoff optimal. This design procedure is then extended to the
system and a code, which outperforms the DjABBA code for QAM constellations
with lower ML-decoding complexity, is presented. So far, the Golden code has
been reported to have an ML-decoding complexity of the order of for
square QAM of size . In this paper, a scheme that reduces its ML-decoding
complexity to is presented.Comment: 28 pages, 5 figures, 3 tables, submitted to IEEE Journal of Selected
Topics in Signal Processin
Generalized Silver Codes
For an transmit, receive antenna system (
system), a {\it{full-rate}} space time block code (STBC) transmits complex symbols per channel use. The well known Golden code is an
example of a full-rate, full-diversity STBC for 2 transmit antennas. Its
ML-decoding complexity is of the order of for square -QAM. The
Silver code for 2 transmit antennas has all the desirable properties of the
Golden code except its coding gain, but offers lower ML-decoding complexity of
the order of . Importantly, the slight loss in coding gain is negligible
compared to the advantage it offers in terms of lowering the ML-decoding
complexity. For higher number of transmit antennas, the best known codes are
the Perfect codes, which are full-rate, full-diversity, information lossless
codes (for ) but have a high ML-decoding complexity of the order
of (for , the punctured Perfect codes are
considered). In this paper, a scheme to obtain full-rate STBCs for
transmit antennas and any with reduced ML-decoding complexity of the
order of , is presented. The codes constructed are
also information lossless for , like the Perfect codes and allow
higher mutual information than the comparable punctured Perfect codes for . These codes are referred to as the {\it generalized Silver codes},
since they enjoy the same desirable properties as the comparable Perfect codes
(except possibly the coding gain) with lower ML-decoding complexity, analogous
to the Silver-Golden codes for 2 transmit antennas. Simulation results of the
symbol error rates for 4 and 8 transmit antennas show that the generalized
Silver codes match the punctured Perfect codes in error performance while
offering lower ML-decoding complexity.Comment: Accepted for publication in the IEEE Transactions on Information
Theory. This revised version has 30 pages, 7 figures and Section III has been
completely revise
A Low-Complexity, Full-Rate, Full-Diversity 2 X 2 STBC with Golden Code's Coding Gain
This paper presents a low-ML-decoding-complexity, full-rate, full-diversity
space-time block code (STBC) for a 2 transmit antenna, 2 receive antenna
multiple-input multiple-output (MIMO) system, with coding gain equal to that of
the best and well known Golden code for any QAM constellation. Recently, two
codes have been proposed (by Paredes, Gershman and Alkhansari and by Sezginer
and Sari), which enjoy a lower decoding complexity relative to the Golden code,
but have lesser coding gain. The STBC presented in this paper has
lesser decoding complexity for non-square QAM constellations, compared with
that of the Golden code, while having the same decoding complexity for square
QAM constellations. Compared with the Paredes-Gershman-Alkhansari and
Sezginer-Sari codes, the proposed code has the same decoding complexity for
non-rectangular QAM constellations. Simulation results, which compare the
codeword error rate (CER) performance, are presented.Comment: Submitted to IEEE Globecom - 2008. 6 pages, 3 figures, 1 tabl
Space-Time Coded Spatial Modulated Physical Layer Network Coding for Two-Way Relaying
Using the spatial modulation approach, where only one transmit antenna is
active at a time, we propose two transmission schemes for two-way relay channel
using physical layer network coding with space time coding using Coordinate
Interleaved Orthogonal Designs (CIOD's). It is shown that using two
uncorrelated transmit antennas at the nodes, but using only one RF transmit
chain and space-time coding across these antennas can give a better performance
without using any extra resources and without increasing the hardware
implementation cost and complexity. In the first transmission scheme, two
antennas are used only at the relay, Adaptive Network Coding (ANC) is employed
at the relay and the relay transmits a CIOD Space Time Block Code (STBC). This
gives a better performance compared to an existing ANC scheme for two-way relay
channel which uses one antenna each at all the three nodes. It is shown that
for this scheme at high SNR the average end-to-end symbol error probability
(SEP) is upper bounded by twice the SEP of a point-to-point fading channel. In
the second transmission scheme, two transmit antennas are used at all the three
nodes, CIOD STBC's are transmitted in multiple access and broadcast phases.
This scheme provides a diversity order of two for the average end-to-end SEP
with an increased decoding complexity of for an arbitrary
signal set and for square QAM signal set.Comment: 9 pages, 7 figure
Maximum Rate of Unitary-Weight, Single-Symbol Decodable STBCs
It is well known that the Space-time Block Codes (STBCs) from Complex
orthogonal designs (CODs) are single-symbol decodable/symbol-by-symbol
decodable (SSD). The weight matrices of the square CODs are all unitary and
obtainable from the unitary matrix representations of Clifford Algebras when
the number of transmit antennas is a power of 2. The rate of the square
CODs for has been shown to be complex symbols per
channel use. However, SSD codes having unitary-weight matrices need not be
CODs, an example being the Minimum-Decoding-Complexity STBCs from
Quasi-Orthogonal Designs. In this paper, an achievable upper bound on the rate
of any unitary-weight SSD code is derived to be complex
symbols per channel use for antennas, and this upper bound is larger than
that of the CODs. By way of code construction, the interrelationship between
the weight matrices of unitary-weight SSD codes is studied. Also, the coding
gain of all unitary-weight SSD codes is proved to be the same for QAM
constellations and conditions that are necessary for unitary-weight SSD codes
to achieve full transmit diversity and optimum coding gain are presented.Comment: accepted for publication in the IEEE Transactions on Information
Theory, 9 pages, 1 figure, 1 Tabl
High-Rate Space-Time Coded Large MIMO Systems: Low-Complexity Detection and Channel Estimation
In this paper, we present a low-complexity algorithm for detection in
high-rate, non-orthogonal space-time block coded (STBC) large-MIMO systems that
achieve high spectral efficiencies of the order of tens of bps/Hz. We also
present a training-based iterative detection/channel estimation scheme for such
large STBC MIMO systems. Our simulation results show that excellent bit error
rate and nearness-to-capacity performance are achieved by the proposed
multistage likelihood ascent search (M-LAS) detector in conjunction with the
proposed iterative detection/channel estimation scheme at low complexities. The
fact that we could show such good results for large STBCs like 16x16 and 32x32
STBCs from Cyclic Division Algebras (CDA) operating at spectral efficiencies in
excess of 20 bps/Hz (even after accounting for the overheads meant for pilot
based training for channel estimation and turbo coding) establishes the
effectiveness of the proposed detector and channel estimator. We decode perfect
codes of large dimensions using the proposed detector. With the feasibility of
such a low-complexity detection/channel estimation scheme, large-MIMO systems
with tens of antennas operating at several tens of bps/Hz spectral efficiencies
can become practical, enabling interesting high data rate wireless
applications.Comment: v3: Performance/complexity comparison of the proposed scheme with
other large-MIMO architectures/detectors has been added (Sec. IV-D). The
paper has been accepted for publication in IEEE Journal of Selected Topics in
Signal Processing (JSTSP): Spl. Iss. on Managing Complexity in Multiuser MIMO
Systems. v2: Section V on Channel Estimation is update
- …